Patents by Inventor Kengo Fujiwara

Kengo Fujiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240070562
    Abstract: An information processing system includes one or more processors configured to: acquire, from a client expected to use plural reservable services in combination, client information including a purpose of the client; identify the plural services associated with the purpose in the client information; acquire business operator information on business operators that provide the plural identified services, the business operator information including schedules of the business operators; and make a collective reservation for a combination of the plural identified services with use time frames of the plural services not overlapping each other based on the business operator information.
    Type: Application
    Filed: March 6, 2023
    Publication date: February 29, 2024
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Tomotake NIHIRA, Miku Enomoto, Momoko Fujiwara, Kengo Tokuchi
  • Patent number: 11851046
    Abstract: A hybrid vehicle control method controls a hybrid vehicle. In this control method, a rotational speed command value for a power generation system is determined in accordance with a state of a drive system, a torque command value is determined for the power generation system such that the rotational speed of the power generation system reaches the rotational speed command value, a damping control is performed to suppress a characteristic vibration component generated in a connection between the engine and the power generator to calculate a final torque command value for the power generation system, and the torque command value is set as the final torque command value without performing the damping control upon determining a system resonance can occur that is caused by vibration of a component different from the characteristic vibration component.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: December 26, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takahiro Kikuchi, Kengo Fujiwara
  • Patent number: 11801757
    Abstract: A control method for an electric vehicle in which a motor is used as a traveling drive source and deceleration is performed by a regenerative braking force of the motor, the electric vehicle including a towing unit configured to tow a separate object, the method including: acquiring an accelerator operation amount; acquiring a total mass of the electric vehicle; estimating a disturbance torque acting on the electric vehicle; acquiring an angular velocity of a rotary body; estimating a vehicle body speed of the electric vehicle; calculating a torque command value for the motor; measuring a load applied to the towing unit; correcting the total mass of the electric vehicle based on the measured load applied to the towing unit and the torque command value; controlling a torque generated in the motor based on the torque command value; and converging the torque command value to the disturbance torque.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 31, 2023
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Akira Sawada, Takashi Nakajima, Kengo Fujiwara, Shou Oono, Yui Ito
  • Publication number: 20230327592
    Abstract: An electric motor control method for controlling an electric motor by voltage phase control performed based on a voltage norm command value representing a magnitude of a voltage to be supplied to the electric motor and a voltage phase command value representing a phase of the voltage. The method including: acquiring a required time required for calculating a final command value of a voltage applied to the electric motor by the voltage phase control according to a command value calculation model for calculation by using a rotation speed parameter related to a rotation speed of the electric motor; detecting the rotation speed parameter; changing the detected rotation speed parameter based on the required time; and calculating the final command value by using the changed rotation speed parameter according to the command value calculation model.
    Type: Application
    Filed: August 28, 2020
    Publication date: October 12, 2023
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Tetsuro Kojima, Kengo Fujiwara
  • Publication number: 20230303060
    Abstract: A hybrid vehicle control method controls a hybrid vehicle. In this control method, a rotational speed command value for a power generation system is determined in accordance with a state of a drive system, a torque command value is determined for the power generation system such that the rotational speed of the power generation system reaches the rotational speed command value, a damping control is performed to suppress a characteristic vibration component generated in a connection between the engine and the power generator to calculate a final torque command value for the power generation system, and the torque command value is set as the final torque command value without performing the damping control upon determining a system resonance can occur that is caused by vibration of a component different from the characteristic vibration component.
    Type: Application
    Filed: August 24, 2020
    Publication date: September 28, 2023
    Inventors: Takahiro KIKUCHI, Kengo FUJIWARA
  • Publication number: 20220379732
    Abstract: A control method for an electric vehicle using a motor as a traveling drive source to decelerate by a regenerative braking force of the motor, including: obtaining an accelerator operation amount; estimating a disturbance torque acting on a vehicle body of the electric vehicle; obtaining an angular velocity of a rotating body that correlates to a rotation speed of a drive shaft which drives the electric vehicle; calculating a first torque command value based on the accelerator operation amount; setting the first torque command value to a torque command value; controlling a torque generated in the motor based on the torque command value; setting a target stop position at the time of stopping the electric vehicle; calculating a target angular velocity of the rotating body according to a distance from the electric vehicle to the target stop position; calculating a second torque command value for stopping the electric vehicle at the target stop position based on a difference between the target angular velocity an
    Type: Application
    Filed: October 28, 2019
    Publication date: December 1, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Katsunori NAKAMURA, Akira SAWADA, Takashi NAKAJIMA, Kengo FUJIWARA
  • Publication number: 20220185121
    Abstract: A control method for an electric vehicle according to the present embodiment is a control method for an electric vehicle in which an electric motor 4 is used as a traveling drive source and deceleration is performed by a regenerative braking force of the electric motor 4.
    Type: Application
    Filed: March 27, 2019
    Publication date: June 16, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Akira SAWADA, Takashi NAKAJIMA, Kengo FUJIWARA, Shou OONO, YUI ITO
  • Patent number: 11146196
    Abstract: An electric machine control method includes: calculating a voltage command value based on a torque command value to an electric machine; calculating a modulation rate based on a power-supply voltage and the voltage command value; calculating a compensation gain in accordance with the modulation rate, the compensation gain being used to linearize a relationship between a magnitude of the voltage command value and a magnitude of a fundamental wave component of an output voltage to the electric machine; calculating a compensated voltage command value based on the voltage command value and the compensation gain; controlling the output voltage to the electric machine based on the compensated voltage command value; and limiting the compensation gain to be equal to or less than a predetermined upper limit.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 12, 2021
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takahiro Mizuguchi, Mitsuhiro Shouji, Kengo Fujiwara
  • Patent number: 10994619
    Abstract: A control method for an electric vehicle includes controlling a torque of a motor based on a final torque command value by calculating the final torque command value such that a vibration damping control to reduce vibrations of a driving force transmission system of a vehicle is performed on a target torque command value set based on vehicle information, calculating the final torque command value based on the target torque command value and a value obtained by multiplying a drive-shaft torsional angular velocity by a feedback gain, estimating, by use of a vehicle model that models the driving force transmission system, a dead-zone period during which a motor torque output from the motor is not transmitted to a drive-shaft torque of the vehicle, and determining whether or not the vehicle is just before stop of the vehicle.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: May 4, 2021
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Sawada, Kengo Fujiwara, Shou Oono
  • Patent number: 10972020
    Abstract: The control method for an electric vehicle sets a motor torque command value based on vehicle information and controls torque of a first motor connected to a first drive wheel which is one of a front drive wheel and a rear drive wheel. The control method for an electric vehicle calculates a first torque command value by a feedforward computation based on the motor torque command value, detects a rotation angular velocity of the first motor, and estimates a rotation angular velocity of the first motor based on the first torque command value by using a vehicle model Gp(s) that simulates a transfer characteristic from a torque input to the first drive wheel to a rotation angular velocity of the first motor.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: April 6, 2021
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Sawada, Ken Itou, Kengo Fujiwara
  • Publication number: 20210028733
    Abstract: An electric machine control method includes: calculating a voltage command value based on a torque command value to an electric machine; calculating a modulation rate based on a power-supply voltage and the voltage command value; calculating a compensation gain in accordance with the modulation rate, the compensation gain being used to linearize a relationship between a magnitude of the voltage command value and a magnitude of a fundamental wave component of an output voltage to the electric machine; calculating a compensated voltage command value based on the voltage command value and the compensation gain; controlling the output voltage to the electric machine based on the compensated voltage command value; and limiting the compensation gain to be equal to or less than a predetermined upper limit.
    Type: Application
    Filed: March 16, 2018
    Publication date: January 28, 2021
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Takahiro Mizuguchi, Mitsuhiro Shouji, Kengo Fujiwara
  • Publication number: 20200259431
    Abstract: The control method for an electric vehicle sets a motor torque command value based on vehicle information and controls torque of a first motor connected to a first drive wheel which is one of a front drive wheel and a rear drive wheel. The control method for an electric vehicle calculates a first torque command value by a feedforward computation based on the motor torque command value, detects a rotation angular velocity of the first motor, and estimates a rotation angular velocity of the first motor based on the first torque command value by using a vehicle model Gp(s) that simulates a transfer characteristic from a torque input to the first drive wheel to a rotation angular velocity of the first motor.
    Type: Application
    Filed: June 1, 2017
    Publication date: August 13, 2020
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Akira Sawada, Ken Itou, Kengo Fujiwara
  • Patent number: 10696177
    Abstract: A vehicle control device for decelerating by the regenerative braking of a motor connected to a drive shaft of a drive wheel calculates a torque command value for suppressing a vibration component of the drive shaft by feeding back a torsional angular velocity of the drive shaft to a desired torque that determines the power of the motor and controls the operation of the motor on the basis of the torque command value. The control device estimates a dead zone section, in which the torque of the motor in the vehicle is not transmitted to the drive shaft, on the basis of the desired torque and limits the torque command value in the case where the vehicle is in the dead zone section.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 30, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kengo Fujiwara, Akira Sawada, Sho Ohno
  • Patent number: 10507819
    Abstract: The control method for the hybrid vehicle includes a rotation speed control torque calculation step of, based on a rotation speed command value for the electric generator and a rotation speed detection value of the electric generator, calculating a torque command value for controlling the rotation speed of the electric generator, and an electric generator control step of controlling the electric generator according to the torque command value.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: December 17, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kengo Fujiwara, Ken Itou
  • Publication number: 20190337398
    Abstract: A vehicle control device for decelerating by the regenerative braking of a motor connected to a drive shaft of a drive wheel calculates a torque command value for suppressing a vibration component of the drive shaft by feeding back a torsional angular velocity of the drive shaft to a desired torque that determines the power of the motor and controls the operation of the motor on the basis of the torque command value. The control device estimates a dead zone section, in which the torque of the motor in the vehicle is not transmitted to the drive shaft, on the basis of the desired torque and limits the torque command value in the case where the vehicle is in the dead zone section.
    Type: Application
    Filed: July 29, 2016
    Publication date: November 7, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kengo FUJIWARA, Akira SAWADA, Sho OHNO
  • Publication number: 20190299967
    Abstract: The control method for the hybrid vehicle includes a rotation speed control torque calculation step of, based on a rotation speed command value for the electric generator and a rotation speed detection value of the electric generator, calculating a torque command value for controlling the rotation speed of the electric generator, and an electric generator control step of controlling the electric generator according to the torque command value.
    Type: Application
    Filed: June 8, 2016
    Publication date: October 3, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kengo FUJIWARA, Ken ITOU
  • Publication number: 20190100114
    Abstract: A control method for an electric vehicle includes controlling a torque of a motor based on a final torque command value by calculating the final torque command value such that a vibration damping control to reduce vibrations of a driving force transmission system of a vehicle is performed on a target torque command value set based on vehicle information, calculating the final torque command value based on the target torque command value and a value obtained by multiplying a drive-shaft torsional angular velocity by a feedback gain, estimating, by use of a vehicle model that models the driving force transmission system, a dead-zone period during which a motor torque output from the motor is not transmitted to a drive-shaft torque of the vehicle, and determining whether or not the vehicle is just before stop of the vehicle.
    Type: Application
    Filed: December 14, 2016
    Publication date: April 4, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Akira Sawada, Kengo Fujiwara, Shou Oono
  • Patent number: 9252689
    Abstract: A motor control device includes a switching element that controls a motor, a current control part that outputs a PWM signal for driving the switching element, and a setting part that sets a carrier frequency of the PWM signal. Further, a motor control part includes a torque ripple compensation part that sets a torque ripple compensation value based on a motor torque command value, the carrier frequency, and a rotation state of the motor. The current control part outputs the PWM signal based on the motor torque command value and the torque ripple compensation value.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 2, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yosuke Fukunaga, Hiromichi Kawamura, Kengo Fujiwara, Hideo Nakamura
  • Patent number: 9209722
    Abstract: An inverter control device includes an inverter; a command value calculator; a phase compensator; an inverter controller; a d-q axes non-interference voltage command value calculator for calculating a d-q axes non-interference voltage command value to cancel out interference voltages and for outputting the d-q axes non-interference voltage command value to the command value calculator; and a reverse phase. The phase compensator calculates the amount of phase lead based on the rotation speed and a phase compensation time set in order to obtain a predetermined phase margin, and compensates for a phase based on characteristics inherent in the motor, by the amount of phase lead. The reverse phase compensator compensates for a phase of the d-q axes non-interference voltage command value by the same amount of compensation as the amount of phase lead in the opposite direction to the phase compensated for by the phase compensator.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: December 8, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Naoki Takahashi, Mitsuhiro Shouji, Kengo Fujiwara, Yosuke Fukunaga
  • Patent number: 9174524
    Abstract: A vehicle comprises a drive motor (15) that generates a drive torque to be transmitted to drive wheels (18), a power supply source (12, 17) that includes, at least, a generator (12), and supplies power to the drive motor (15), and a programmable controller (20).
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: November 3, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yuji Katsumata, Kengo Fujiwara