Patents by Inventor Kenichi AMITANI

Kenichi AMITANI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10629935
    Abstract: In this fuel cell electrode catalyst layer, a catalyst is supported on a carrier comprising inorganic oxide particles. The fuel cell electrode catalyst layer is provided with a porous structure. When a mercury penetration method is used to measure the pore size distribution of the porous structure, a peak is observed in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and a peak is also observed in the range spanning from over 0.1 ?m to not more than 1 ?m. When P1 represents the peak intensity in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and P2 represents the peak intensity in the range spanning from over 0.1 ?m to not more than 1 ?m, the value of P2/P1 is 0.2-10 inclusive. It is preferable that the inorganic oxide be tin oxide.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 21, 2020
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Ryoma Tsukuda, Naohiko Abe, Hiromu Watanabe, Susumu Takahashi, Kenichi Amitani, Akiko Sugimoto
  • Patent number: 10615425
    Abstract: Disclosed is a tin oxide containing antimony and at least one element A selected from the group consisting of tantalum, tungsten, niobium, and bismuth. The antimony and the at least one element A selected from the group consisting of tantalum, tungsten, niobium, and bismuth are preferably dissolved in a solid state in tin oxide. The ratio of the number of moles of the element A to the number of moles of antimony, i.e., [(the number of moles of the element A/the number of moles of antimony)], is preferably 0.1 to 10.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: April 7, 2020
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Koichi Miyake, Susumu Takahashi, Hiromu Watanbe, Naohiko Abe, Ryoma Tsukuda, Kenichi Amitani, Koji Taniguchi, Hiroki Takahashi, Yoshihiro Yoneda, Kazuhiko Kato
  • Publication number: 20180175398
    Abstract: Disclosed is a tin oxide containing antimony and at least one element A selected from the group consisting of tantalum, tungsten, niobium, and bismuth. The antimony and the at least one element A selected from the group consisting of tantalum, tungsten, niobium, and bismuth are preferably dissolved in a solid state in tin oxide. The ratio of the number of moles of the element A to the number of moles of antimony, i.e., [(the number of moles of the element A/the number of moles of antimony)], is preferably 0.1 to 10.
    Type: Application
    Filed: July 21, 2016
    Publication date: June 21, 2018
    Inventors: Koichi MIYAKE, Susumu TAKAHASHI, Hiromu WATANBE, Naohiko ABE, Ryoma TSUKUDA, Kenichi AMITANI, Koji TANIGUCHI, Hiroki TAKAHASHI, Yoshihiro YONEDA, Kazuhiko KATO
  • Publication number: 20170279143
    Abstract: In this fuel cell electrode catalyst layer, a catalyst is supported on a carrier comprising inorganic oxide particles. The fuel cell electrode catalyst layer is provided with a porous structure. When a mercury penetration method is used to measure the pore size distribution of the porous structure, a peak is observed in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and a peak is also observed in the range spanning from over 0.1 ?m to not more than 1 ?m. When P1 represents the peak intensity in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and P2 represents the peak intensity in the range spanning from over 0.1 ?m to not more than 1 ?m, the value of P2/P1 is 0.2-10 inclusive. It is preferable that the inorganic oxide be tin oxide.
    Type: Application
    Filed: October 21, 2015
    Publication date: September 28, 2017
    Inventors: Ryoma TSUKUDA, Naohiko ABE, Hiromu WATANABE, Susumu TAKAHASHI, Kenichi AMITANI, Akiko SUGIMOTO