Patents by Inventor Kenichi Okajima

Kenichi Okajima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9111692
    Abstract: A method for manufacturing a laminated ceramic electronic component, which includes the steps of preparing a laminate chip having opposed end edges of internal electrodes exposed at opposed side surfaces of the laminate chip; forming a first insulator section and a second insulator section, respectively, on opposed side surfaces of the laminate chip by pressing against a metal plate with a volume of grooves filled with a paste, and swinging the metal plate in any direction when pulling the laminate chip away from the metal plate; and firing the laminate chip with the first insulator section and second insulator section formed thereon. The paste has a viscosity of 500 Pa·s to 2500 Pa·s, and a content C (vol %) of an inorganic solid satisfies a predetermined condition.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 18, 2015
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenichi Hamanaka, Eiji Ito, Yasuharu Yamashita, Kenichi Okajima, Togo Matsui
  • Patent number: 9082556
    Abstract: A monolithic ceramic capacitor includes a ceramic sintered body including a plurality of stacked ceramic layers, and first and second inner electrodes alternately arranged inside the ceramic sintered body to oppose each other in a stacking direction of the ceramic layers with the ceramic layers interposed between the adjacent first and second inner electrodes. Among the ceramic layers, a number N of the ceramic layers disposed between the first inner electrodes and the second inner electrodes is at least 232. A proportion of volume occupied by the first and second inner electrodes in the ceramic sintered body is at least about 0.37. A size of each of side gap portions is about 40 ?m or less.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: July 14, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Daiki Fukunaga, Kenichi Okajima, Yasuharu Yamashita, Naoto Muranishi, Hideaki Tanaka
  • Patent number: 8956486
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block are spaced apart from each other and then tumbled, thereby uniformly making the side surface of each of the green chips an open surface. Thereafter, an adhesive is applied to the side surface. Then, by placing a side surface ceramic green sheet on an affixation elastic body, and pressing the side surface of the green chips against the side surface ceramic green sheet, the side surface ceramic green sheet is punched and stuck to the side surface.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 17, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Togo Matsui, Minoru Dooka, Hiroyoshi Takashima, Kenichi Okajima
  • Patent number: 8914956
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a ceramic paste is applied by using an application plate to a side surface of each of a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block. In the applying step, the ceramic paste is transferred to the side surface by moving the green chips and the application plate relative to each other in the direction in which the side surface extends while separating the green chips from the application plate, in a state where the ceramic paste is connected to both the green chips and the application plate.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: December 23, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Togo Matsui, Minoru Dooka, Hiroyoshi Takashima, Kenichi Okajima
  • Publication number: 20140345779
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block are spaced apart from each other and then tumbled, thereby uniformly making the side surface of each of the green chips an open surface. Thereafter, an adhesive is applied to the side surface. Then, by placing a side surface ceramic green sheet on an affixation elastic body, and pressing the side surface of the green chips against the side surface ceramic green sheet, the side surface ceramic green sheet is punched and stuck to the side surface.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Togo MATSUI, Minoru DOOKA, Hiroyoshi TAKASHIMA, Kenichi OKAJIMA
  • Patent number: 8795454
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block are spaced apart from each other and then tumbled, thereby uniformly making the side surface of each of the green chips an open surface. Thereafter, an adhesive is applied to the side surface. Then, by placing a side surface ceramic green sheet on an affixation elastic body, and pressing the side surface of the green chips against the side surface ceramic green sheet, the side surface ceramic green sheet is punched and stuck to the side surface.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 5, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Togo Matsui, Minoru Dooka, Hiroyoshi Takashima, Kenichi Okajima
  • Patent number: 8773839
    Abstract: A multilayer ceramic electronic component that is small, that has high electrical strength, and that is resistant to separation between ceramic layers includes a ceramic sintered body having a substantially rectangular parallelepiped shape and a plurality of first and second internal electrodes. The plurality of first and second internal electrodes are alternately arranged so as to face each other. The first and second internal electrodes are parallel or substantially parallel to first and second major surfaces. The first and second internal electrodes are exposed to at least one of the fifth and sixth surfaces and are not exposed to the third or fourth surface. No bends exist in any of the ends of each of the first and second internal electrodes adjacent to the third and fourth surfaces.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: July 8, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasuharu Yamashita, Kenichi Okajima, Hideaki Tanaka, Naoto Muranishi, Daiki Fukunaga, Nagato Omori
  • Publication number: 20140185185
    Abstract: A raw ceramic portion is formed on each of first and second lateral surfaces of a raw ceramic body. The raw ceramic portions contain ceramic particles and more of at least one constituent selected from Ba, Mg, Mn, and a rare-earth element between the ceramic particles than the ceramic section of the raw ceramic body in terms of total amount. The raw ceramic body is fired with the raw ceramic portions thereon. In this way, a ceramic electronic component is obtained that has a main body left after the raw ceramic body is fired with the raw ceramic portions thereon.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 3, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenichi OKAJIMA, Daiki FUKUNAGA, Takayuki YAO, Yasunari NAKAMURA, Akihiro SHIOTA
  • Publication number: 20140096890
    Abstract: A method for manufacturing a laminated ceramic electronic component, which includes the steps of preparing a laminate chip having opposed end edges of internal electrodes exposed at opposed side surfaces of the laminate chip; forming a first insulator section and a second insulator section, respectively, on opposed side surfaces of the laminate chip by pressing against a metal plate with a volume of grooves filled with a paste, and swinging the metal plate in any direction when pulling the laminate chip away from the metal plate; and firing the laminate chip with the first insulator section and second insulator section formed thereon. The paste has a viscosity of 500 Pa·s to 2500 Pa·s, and a content C (vol %) of an inorganic solid satisfies a predetermined condition.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 10, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenichi Hamanaka, Eiji Ito, Yasuharu Yamashita, Kenichi Okajima, Togo Matsui
  • Publication number: 20130340920
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block are spaced apart from each other and then tumbled, thereby uniformly making the side surface of each of the green chips an open surface. Thereafter, an adhesive is applied to the side surface. Then, by placing a side surface ceramic green sheet on an affixation elastic body, and pressing the side surface of the green chips against the side surface ceramic green sheet, the side surface ceramic green sheet is punched and stuck to the side surface.
    Type: Application
    Filed: August 29, 2013
    Publication date: December 26, 2013
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Togo MATSUI, Minoru DOOKA, Hiroyoshi TAKASHIMA, Kenichi OKAJIMA
  • Patent number: 8584332
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a ceramic paste is applied by using an application plate to a side surface of each of a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block. In the applying step, the ceramic paste is transferred to the side surface by moving the green chips and the application plate relative to each other in the direction in which the side surface extends while separating the green chips from the application plate, in a state where the ceramic paste is connected to both the green chips and the application plate.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: November 19, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Togo Matsui, Minoru Dooka, Hiroyoshi Takashima, Kenichi Okajima
  • Publication number: 20130276955
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a ceramic paste is applied by using an application plate to a side surface of each of a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block. In the applying step, the ceramic paste is transferred to the side surface by moving the green chips and the application plate relative to each other in the direction in which the side surface extends while separating the green chips from the application plate, in a state where the ceramic paste is connected to both the green chips and the application plate.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 24, 2013
    Inventors: Togo MATSUI, Minoru DOOKA, Hiroyoshi TAKASHIMA, Kenichi OKAJIMA
  • Publication number: 20120250220
    Abstract: A multilayer ceramic electronic component that is small, that has high electrical strength, and that is resistant to separation between ceramic layers includes a ceramic sintered body having a substantially rectangular parallelepiped shape and a plurality of first and second internal electrodes. The plurality of first and second internal electrodes are alternately arranged so as to face each other. The first and second internal electrodes are parallel or substantially parallel to first and second major surfaces. The first and second internal electrodes are exposed to at least one of the fifth and sixth surfaces and are not exposed to the third or fourth surface. No bends exist in any of the ends of each of the first and second internal electrodes adjacent to the third and fourth surfaces.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Yasuharu YAMASHITA, Kenichi OKAJIMA, Hideaki TANAKA, Naoto MURANISHI, Daiki FUKUNAGA, Nagato OMORI
  • Publication number: 20120250217
    Abstract: A monolithic ceramic capacitor includes a ceramic sintered body including a plurality of stacked ceramic layers, and first and second inner electrodes alternately arranged inside the ceramic sintered body to oppose each other in a stacking direction of the ceramic layers with the ceramic layers interposed between the adjacent first and second inner electrodes. Among the ceramic layers, a number N of the ceramic layers disposed between the first inner electrodes and the second inner electrodes is at least 232. A proportion of volume occupied by the first and second inner electrodes in the ceramic sintered body is at least about 0.37. A size of each of side gap portions is about 40 ?m or less.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Daiki FUKUNAGA, Kenichi OKAJIMA, Yasuharu YAMASHITA, Naoto MURANISHI, Hideaki TANAKA
  • Publication number: 20120234462
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block are spaced apart from each other and then tumbled, thereby uniformly making the side surface of each of the green chips an open surface. Thereafter, an adhesive is applied to the side surface. Then, by placing a side surface ceramic green sheet on an affixation elastic body, and pressing the side surface of the green chips against the side surface ceramic green sheet, the side surface ceramic green sheet is punched and stuck to the side surface.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 20, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Togo MATSUI, Minoru DOOKA, Hiroyoshi TAKASHIMA, Kenichi OKAJIMA
  • Publication number: 20120233828
    Abstract: In a manufacturing method for a monolithic ceramic electronic component, a ceramic paste is applied by using an application plate to a side surface of each of a plurality of green chips arrayed in row and column directions which are obtained after cutting a mother block. In the applying step, the ceramic paste is transferred to the side surface by moving the green chips and the application plate relative to each other in the direction in which the side surface extends while separating the green chips from the application plate, in a state where the ceramic paste is connected to both the green chips and the application plate.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 20, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Togo MATSUI, Minoru DOOKA, Hiroyoshi TAKASHIMA, Kenichi OKAJIMA
  • Patent number: 7403809
    Abstract: A biomagnetic field measuring apparatus has a plurality of fluxmeters disposed externally of a living body and each including a superconducting quantum interference device (SQUID) for detecting a biomagnetic field generated from the living body, the plurality of fluxmeters being operative to detect a temporal change of a component of the biomagnetic field in a first direction which is vertical to the surface of the living body, an operation processor for performing computation for determining a temporal change of a value proportional to a root of square sum of differential value of the first-direction magnetic field component in second and third directions which cross the first direction and computation for integrating the temporal change of the value over a predetermined interval to determine an integral value, and a display for displaying the determined integral value. Distribution of magnetic fields generated from the heart is determined with a small number of fluxmeters.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: July 22, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Keiji Tsukada, Akihiko Kandori, Kenichi Okajima, Hitoshi Sasabuchi, Hiroyuki Suzuki, Shoji Kondo, Yasuaki Komiyama
  • Publication number: 20040193037
    Abstract: A biomagnetic field measuring apparatus has a plurality of fluxmeters disposed externally of a living body and each including a superconducting quantum interference device (SQUID) for detecting a biomagnetic field generated from the living body, the plurality of fluxmeters being operative to detect a temporal change of a component of the biomagnetic field in a first direction which is vertical to the surface of the living body, an operation processor for performing computation for determining a temporal change of a value proportional to a root of square sum of differential value of the first-direction magnetic field component in second and third directions which cross the first direction and computation for integrating the temporal change of the value over a predetermined interval to determine an integral value, and a display for displaying the determined integral value. Distribution of magnetic fields generated from the heart is determined with a small number of fluxmeters.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 30, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Keiji Tsukada, Akihiko Kandori, Kenichi Okajima, Hitoshi Sasabuchi, Hiroyuki Suzuki, Shoji Kondo, Yasuaki Komiyama
  • Publication number: 20040136493
    Abstract: There are provided an X-ray detector which can realize a larger area without lowering resolution and reducing X-ray detective efficiency when obtaining a matrix construction having a large number of X-ray detecting elements by tiling and a system using the same.
    Type: Application
    Filed: July 10, 2003
    Publication date: July 15, 2004
    Inventors: Yasutaka Konno, Kenichi Okajima, Hironori Ueki
  • Patent number: 6735460
    Abstract: A biomagnetic field measuring apparatus has a plurality of fluxmeters disposed externally of a living body and each including a superconducting quantum interference device (SQUID) for detecting a biomagnetic field generated from the living body, the plurality of fluxmeters being operative to detect a temporal change of a component of the biomagnetic field in a first direction which is vertical to the surface of the living body, an operation processor for performing computation for determining a temporal change of a value proportional to a root of square sum of differential value of the first-direction magnetic field component in second and third directions which cross the first direction and computation for integrating the temporal change of the value over a predetermined interval to determine an integral value, and a display for displaying the determined integral value. Distribution of magnetic fields generated from the heart is determined with a small number of fluxmeters.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: May 11, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Keiji Tsukada, Akihiko Kandori, Kenichi Okajima, Hitoshi Sasabuchi, Hiroyuki Suzuki, Shoji Kondo, Yasuaki Komiyama