Patents by Inventor Kenichi Oyaizu

Kenichi Oyaizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230357507
    Abstract: The present invention aims to provide a polymer material that has a high refractive index and can be suitably used for applications such as optical applications. The present invention relates to the sulfur-containing polymer containing at least one structural unit selected from the group consisting of a structural unit (A) represented by the following formula (1), a structural unit (B) represented by the following formula (2), and a structural unit (C) represented by the following formula (3); and a reactive functional group, wherein X1, X2, and X3 are the same as or different from each other and are each an optionally substituted divalent aromatic hydrocarbon group.
    Type: Application
    Filed: September 22, 2021
    Publication date: November 9, 2023
    Inventors: Kenichi OYAIZU, Kanta MATSUSHIMA, Seigo WATANABE, Teru TAKAYAMA, Hiromichi NISHIO, Tomohiro MIURA, Jun-ichi NAKAMURA, Takeo KAWASE, Teruhisa FUJIBAYASHI, Junya KIMURA
  • Patent number: 11639403
    Abstract: A polymer includes a repeating unit represented by at least one of Formula 1a or Formula 1b: wherein, in Formulae 1a or 1b, CY1 is a group represented by at least one of Formula 1-2 or Formula 1-4, CY2 is a group represented by Formula 1-3, and L1, L2, a1, and a2 are defined the same as in the specification, and in Formulae 1-2, Formula 1-3, or 1-4, X, Y, R1, R2, R11 to R14, b1, b2, R21, R22, b21, b22, Z1, Z2, c1, and c2 are defined the same as in the specification.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: May 2, 2023
    Assignees: SAMSUNG ELECTRONICS CO., LTD., WASEDA UNIVERSITY
    Inventors: Wonsung Choi, Hiroyuki Nishide, Seokgwang Doo, Kenichi Oyaizu
  • Publication number: 20230026457
    Abstract: Provided is an electrode material which is suitable for use as a material for forming electrodes for use in lithium ion secondary batteries, etc. and which makes it possible to heighten the rate characteristics of batteries. The electrode material is characterized by comprising a polymer having, in a side chain, a fluoflavin skeleton such as that shown by the formula and an inorganic active material, the polymer being contained in an amount of 1 mass % or less with respect to the solid components.
    Type: Application
    Filed: November 24, 2020
    Publication date: January 26, 2023
    Applicants: WASEDA UNIVERSITY, NISSAN CHEMICAL CORPORATION
    Inventors: Kenichi OYAIZU, Kan HATAKEYAMA, Tomoki AKAHANE, Choitsu GO, Takahiro KASEYAMA
  • Publication number: 20220289912
    Abstract: The present invention aims to provide a polymeric material having reduced coloration in the visible light region, a high refractive index, and low optical dispersion. The present invention relates to a polymeric material having a sulfoxide structure in a main chain.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 15, 2022
    Inventors: Kenichi OYAIZU, Motoyasu HIRAI, Yushun SUN, Kanta MATSUSHIMA, Jun-ichi NAKAMURA, Takeo KAWASE, Teruhisa FUJIBAYASHI,
  • Publication number: 20210066734
    Abstract: A redox flow battery system includes a redox flow battery cell, a first circulation mechanism, and a second circulation mechanism. The redox flow battery cell includes a positive electrode chamber housing a positive electrode, a negative electrode chamber housing a negative electrode, and a separator separating the positive electrode chamber and the negative electrode chamber. The first circulation mechanism and the second circulation mechanisms circulate electrolytic solutions into the positive electrode chamber and the negative electrode chamber, respectively. The separator is a porous body. Each of the electrolytic solutions contains an active material and a mediator that has a diameter larger than pore distribution d50 of the separator.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Inventors: Kan KITAGAWA, Kenji NAKAMURA, Hiroaki YOTOU, Atsushi NAKAJIMA, Kenichi OYAIZU, Kan HATAKEYAMA, Yota SUGAI
  • Publication number: 20200148797
    Abstract: A polymer includes a repeating unit represented by at least one of Formula 1a or Formula 1b: wherein, in Formulae 1a or 1b, CY1 is a group represented by at least one of Formula 1-2 or Formula 1-4, CY2 is a group represented by Formula 1-3, and L1, L2, a1, and a2 are defined the same as in the specification, and in Formulae 1-2, Formula 1-3, or 1-4, X, Y, R1, R2, R11 to R14, b1, b2, R21, R22, b21, b22, Z1, Z2, c1, and c2 are defined the same as in the specification.
    Type: Application
    Filed: November 11, 2019
    Publication date: May 14, 2020
    Inventors: Wonsung Choi, Hiroyuki NISHIDE, Seokgwang Doo, Kenichi OYAIZU
  • Patent number: 10326138
    Abstract: Materials having charge-storing properties and made variously of dipyridine-fused benzoquinones of formula (1) below or derivatives thereof, dipyridine-fused benzoquinones of formula (4) below or derivatives thereof, or dipyridine-fused benzoquinone skeleton-containing polymers are provided. In the formulas, Ar1 and Ar2 are each independently a pyridine ring that forms together with two carbon atoms on a benzoquinone skeleton, or a derivative thereof. When used as electrode active materials, these charge storage materials are capable of providing high-performance batteries possessing a high capacity, high rate characteristics and high cycle characteristics.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 18, 2019
    Assignees: Waseda University, Nissan Chemical Industries, Ltd.
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Yuya Kambe, Takuji Yoshimoto
  • Patent number: 10164258
    Abstract: A fused-ring quinone-substituted polynorbornene has recurring units of formula (1) and/or (2) below. In formulas (1) and (2), A1 is independently a substituent of formula (3) or (4) below, n is an integer from 1 to 6, and A2 is a substituent of formula (5) or (6) below. In formulas (3) to (6), each X is independently a single bond or a divalent group, and Ar1 and Ar2 are each independently an aromatic hydrocarbon ring or an oxygen atom or sulfur atom-containing aromatic heterocycle that forms together with two carbon atoms on a benzoquinone skeleton. This polymer has charge-storing properties and, when used as an electrode active material, is capable of providing a high-performance battery possessing high capacity, high rate characteristics and high cycle characteristics.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: December 25, 2018
    Assignees: WASEDA UNIVERSITY, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Takuma Kawai, Satoshi Nakao, Takuji Yoshimoto
  • Patent number: 9871253
    Abstract: A ion-conductive fused-ring quinone polymer includes recurring units of formula (1) and/or (2) below wherein each X is independently a single bond or a divalent group, and A1 and A2 are each independently an aromatic hydrocarbon ring or an oxygen atom or sulfur atom-containing aromatic heterocycle that forms together with two carbon atoms on a benzoquinone skeleton. This polymer is a material having charge-storing properties which, when used as an electrode active material, is capable of providing a high-performance battery possessing high capacity, high rate characteristics and high cycle characteristics.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: January 16, 2018
    Assignees: WASEDA UNIVERSITY, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Takuma Kawai, Takuji Yoshimoto
  • Patent number: 9647269
    Abstract: In a secondary battery utilizing redox by a radical site, charge-discharge is carried out in such a manner that a lithium ion moves between a positive electrode and a negative electrode (rocking chair-type). An anion in an amount necessary for electrode doping during charge-discharge is made unnecessary, thereby reducing the amount of an electrolytic solution. A secondary battery with a large energy density is achieved. Provided is an electrode active material including at least one polymer including a radical site capable of being converted into a first cation, and an anion site capable of being bonded with the first cation or a second cation.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: May 9, 2017
    Assignee: NEC Corporation
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Hiroki Yakushiji, Shigeyuki Iwasa, Kentaro Nakahara
  • Publication number: 20170104214
    Abstract: A fused-ring quinone-substituted polynorbornene has recurring units of formula (1) and/or (2) below. In formulas (1) and (2), A1 is independently a substituent of formula (3) or (4) below, n is an integer from 1 to 6, and A2 is a substituent of formula (5) or (6) below. In formulas (3) to (6), each X is independently a single bond or a divalent group, and Ar1 and Ar2 are each independently an aromatic hydrocarbon ring or an oxygen atom or sulfur atom-containing aromatic heterocycle that forms together with two carbon atoms on a benzoquinone skeleton. This polymer has charge-storing properties and, when used as an electrode active material, is capable of providing a high-performance battery possessing high capacity, high rate characteristics and high cycle characteristics.
    Type: Application
    Filed: March 9, 2016
    Publication date: April 13, 2017
    Applicants: WASEDA UNIVERSITY, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroyuki NISHIDE, Kenichi OYAIZU, Takuma KAWAI, Satoshi NAKAO, Takuji YOSHIMOTO
  • Publication number: 20170077517
    Abstract: A ion-conductive fused-ring quinone polymer includes recurring units of formula (1) and/or (2) below wherein each X is independently a single bond or a divalent group, and A1 and A2 are each independently an aromatic hydrocarbon ring or an oxygen atom or sulfur atom-containing aromatic heterocycle that forms together with two carbon atoms on a benzoquinone skeleton. This polymer is a material having charge-storing properties which, when used as an electrode active material, is capable of providing a high-performance battery possessing high capacity, high rate characteristics and high cycle characteristics.
    Type: Application
    Filed: March 9, 2016
    Publication date: March 16, 2017
    Applicants: WASEDA UNIVERSITY, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroyuki NISHIDE, Kenichi OYAIZU, Takuma KAWAI, Takuji YOSHIMOTO
  • Publication number: 20170077518
    Abstract: Materials having charge-storing properties and made variously of dipyridine-fused benzoquinones of formula (1) below or derivatives thereof, dipyridine-fused benzoquinones of formula (4) below or derivatives thereof, or dipyridine-fused benzoquinone skeleton-containing polymers are provided. In the formulas, Ar1 and Ar2 are each independently a pyridine ring that forms together with two carbon atoms on a benzoquinone skeleton, or a derivative thereof. When used as electrode active materials, these charge storage materials are capable of providing high-performance batteries possessing a high capacity, high rate characteristics and high cycle characteristics.
    Type: Application
    Filed: March 9, 2016
    Publication date: March 16, 2017
    Applicants: WASEDA UNIVERSITY, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroyuki NISHIDE, Kenichi OYAIZU, Yuya KAMBE, Takuji YOSHIMOTO
  • Patent number: 9356292
    Abstract: The present invention provides a radical composition capable of suppressing elution of electrode components in an electrolyte solution when used in an electrode for a secondary battery, and a battery using the radical composition. The present invention relates to a radical composition including a pyrroline nitroxide polymer and polyethylene glycols.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 31, 2016
    Assignees: SUMITOMO SEIKA CHEMICALS CO., LTD., NEC CORPORATION
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Sosuke Yamaguchi, Nobutaka Fujimoto, Yuji Kinpara, Shun Hashimoto, Shigeyuki Iwasa, Kentaro Nakahara
  • Patent number: 9236576
    Abstract: A photoelectric element 1 includes a first electrode, an electron transport layer supporting a photosensitizer, a hole transport layer, and a second electrode, and these components are stacked in the above order. The electron transport layer is formed of an organic compound produced by electrolytic polymerization of a precursor having, within one molecule thereof, two or more moieties each having a structure represented by the following structural formula (1). The photoelectric element 1 includes a gel layer composed of the organic compound and an electrolyte solution infiltrated into the organic compound.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: January 12, 2016
    Assignees: Panasonic Corporation, Waseda University
    Inventors: Michio Suzuka, Takashi Sekiguchi, Takeyuki Yamaki, Hiroyuki Nishide, Kenichi Oyaizu, Fumiaki Kato, Naoki Sano
  • Patent number: 9159500
    Abstract: A photoelectric conversion element (100) according to the present disclosure includes: a photoanode (15); a counter electrode (32); a solid compound layer (22) disposed between the photoanode (15) and the counter electrode (32); a charge storage electrode (55) disposed at an interspace from the counter electrode (32); and an electrolyte medium (24) being contained in the solid compound layer (22) and filling the interspace.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 13, 2015
    Assignee: Panasonic Corporation
    Inventors: Michio Suzuka, Takashi Sekiguchi, Naoki Hayashi, Hiroyuki Nishide, Kenichi Oyaizu, Fumiaki Kato
  • Publication number: 20150179353
    Abstract: A photoelectric conversion element (100) according to the present disclosure includes: a photoanode (15); a counter electrode (32); a solid compound layer (22) disposed between the photoanode (15) and the counter electrode (32); a charge storage electrode (55) disposed at an interspace from the counter electrode (32); and an electrolyte medium (24) being contained in the solid compound layer (22) and filling the interspace.
    Type: Application
    Filed: March 13, 2014
    Publication date: June 25, 2015
    Inventors: Michio Suzuka, Takashi Sekiguchi, Naoki Hayashi, Hiroyuki Nishide, Kenichi Oyaizu, Fumiaki Kato
  • Publication number: 20150160152
    Abstract: An electrode for superoxide anions characterized by comprising a conductive component and, superimposed on a surface thereof, a film resulting from electrolytic polymerization of a metal thiofurylporphyrin/axial ligand complex; and a sensor for measuring a superoxide anion concentration including the same. The electrode for superoxide anions, by virtue of not only the excellent performance of electrode provided with the metal porphyrin complex polymer film, but also the presence of the axial ligand, can prevent poisoning by a catalyst poison such as hydrogen peroxide. Accordingly, in any of in vitro or in vivo environments, this electrode for superoxide anions enables detection of superoxide anion radicals without suffering any influence from a catalyst poison such as hydrogen peroxide. Moreover, quantitative assay of superoxide anions can be performed by the use of this electrode for superoxide anion in combination with a counter electrode or a reference electrode.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 11, 2015
    Inventors: Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Masuhide Ishikawa, Katsuya Eguchi, Tomohiro Kobayashi, Satoshi Tsutsui, Yuujirou Toyoda
  • Patent number: 9029845
    Abstract: The present invention provides an electrode composite that has a reaction interface with a large area and can constitute a photoelectric element having high electron transport properties between the reaction interface and the electrode. The electrode composite of the present invention includes a first electrode and a conductive particle layer stacked on the first electrode. The conductive particle layer includes conductive particles containing acicular particles. The conductive particle layer has a three-dimensional porous network structure that is formed by the interconnection of the conductive particles. The three-dimensional network structure is joined to the first electrode. The conductive particle layer contains pores having a pore size of 50 nm or more in a total volume of 50% or more based on the volume of all pores in the conductive particle layer.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 12, 2015
    Assignees: Panasonic Corporation, Waseda University
    Inventors: Michio Suzuka, Takashi Sekiguchi, Hiroyuki Nishide, Kenichi Oyaizu, Fumiaki Kato
  • Patent number: 9013023
    Abstract: A photoelectric element includes a first electrode; and a second electrode positioned so as to face the first electrode; and a semiconductor disposed on a face of the first electrode, the face being positioned so as to face the second electrode; and a photosensitizer carried on the semiconductor; and a first charge-transport layer interposed between the first electrode and the second electrode; and a second charge-transport layer interposed between the first charge-transport layer and the second electrode. The first charge-transport layer and the second charge-transport layer contain different oxidation-reduction materials. The oxidation-reduction material in the first charge-transport layer has an oxidation-reduction potential higher than an oxidation-reduction potential of the oxidation-reduction material in the second charge-transport layer.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 21, 2015
    Assignees: Panasonic Corporation, Waseda University
    Inventors: Michio Suzuka, Takashi Sekiguchi, Naoki Hayashi, Hiroyuki Nishide, Kenichi Oyaizu, Fumiaki Kato