Patents by Inventor Kenichi Yokouchi

Kenichi Yokouchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190068798
    Abstract: A file generation method for generating, based on an original file in a PDF format, a new file in a PDF format having a larger number of pages than the original file includes a reuse information creation step of creating, by taking the original file or a duplicate of the original file as one initial file and analyzing the initial file, reuse information for allowing specification of whether a use state of each resource is a shared state or a non-shared state, and a page duplication step of generating a page that constitutes the new file, by performing, based on the reuse information, duplication of a page in the initial file in such a way that the use state of each resource is same before duplication and after duplication.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 28, 2019
    Inventors: Hiroyuki SEGAWA, Kenichi YOKOUCHI
  • Patent number: 10070014
    Abstract: A white-plate graphic erosion process is performed on print data subjected to a RIP process in the following procedure. First, an erosion candidate region which is a candidate for a region in which a white-plate graphic is eroded is determined. Then, a region to be applied with an ink of a color other than white is determined. Then, an application target region is determined. Then, a region other than a region obtained by an erosion process out of the application target region is determined to be an erosion allowed region. Then, a region included in the colored region and the erosion allowed region out of the erosion candidate region is determined to be an erosion target region. Finally, the values of data of pixels included in the erosion target region among white-plate data are rewritten such that the amount of white ink applied to the pixels is reduced.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: September 4, 2018
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Kenichi Yokouchi, Hiroyuki Segawa
  • Publication number: 20180246041
    Abstract: A method for processing print data includes a matching processing step of performing pattern matching between a streak detection pattern including a streak pattern having a width of one pixel and print data after a RIP process, a length measurement step of determining, when matching is established in the matching processing step, a length of a streak candidate part including a part corresponding to the streak pattern in a region where matching is established and a part continuous in an extending direction of the streak pattern and having a same value as a data value of the streak pattern, in the print data, and a determination step of determining whether or not the streak candidate part is white streak data that possibly results in a streak, by comparing the length determined in the length measurement step against a predetermined threshold.
    Type: Application
    Filed: January 12, 2018
    Publication date: August 30, 2018
    Inventors: Yohei Onuki, Kenichi Yokouchi, Hiroyuki Segawa
  • Publication number: 20180025258
    Abstract: A white-plate graphic erosion process is performed on print data subjected to a RIP process in the following procedure. First, an erosion candidate region which is a candidate for a region in which a white-plate graphic is eroded is determined. Then, a region to be applied with an ink of a color other than white is determined. Then, an application target region is determined. Then, a region other than a region obtained by an erosion process out of the application target region is determined to be an erosion allowed region. Then, a region included in the colored region and the erosion allowed region out of the erosion candidate region is determined to be an erosion target region. Finally, the values of data of pixels included in the erosion target region among white-plate data are rewritten such that the amount of white ink applied to the pixels is reduced.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Inventors: Kenichi YOKOUCHI, Hiroyuki SEGAWA
  • Patent number: 9831108
    Abstract: A susceptor that holds a semiconductor wafer placed thereon is capable of moving up and down inside a chamber. For preheating with a halogen lamp, the susceptor moves to a preheating position. The preheating position is a height of the susceptor that achieves the most uniform in-plane illumination distribution of light emitted from the halogen lamp and applied to the semiconductor wafer. After the preheating is finished, the susceptor moves to a flash heating position for irradiation with a flash from a flash lamp. The flash heating position is a height of the susceptor that achieves the most uniform in-plane illumination distribution of a flash emitted from the flash lamp and applied to the semiconductor wafer.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: November 28, 2017
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kenichi Yokouchi, Nobuhiko Nishide
  • Patent number: 9805932
    Abstract: First irradiation which causes an emission output from a flash lamp to reach its maximum value over a time period in the range of 1 to 20 milliseconds is performed to increase the temperature of a front surface of a semiconductor wafer from a preheating temperature to a target temperature for a time period in the range of 1 to 20 milliseconds. This achieves the activation of the impurities. Subsequently, second irradiation which gradually decreases the emission output from the maximum value over a time period in the range of 3 to 50 milliseconds is performed to maintain the temperature of the front surface within a ±25° C. range around the target temperature for a time period in the range of 3 to 50 milliseconds. This prevents the occurrence of process-induced damage while suppressing the diffusion of the impurities.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 31, 2017
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kazuhiko Fuse, Shinichi Kato, Kenichi Yokouchi
  • Patent number: 9633868
    Abstract: After a substrate implanted with impurities is heated to a preheating temperature, the front surface of the substrate is heated to a target temperature by irradiating the front surface of the substrate with a flash of light. Further, the flash irradiation is continued to maintain the temperature of the front surface near the target temperature for a predetermined time period. At this time, a flash irradiation time period in the flash heating step is made longer than a heat conduction time period required for heat conduction from the front surface of the substrate to the back surface thereof, and a difference in temperature between the front and back surfaces of the substrate is controlled to be always not more than one-half of an increased temperature from the preheating temperature to the target temperature during the flash irradiation.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: April 25, 2017
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Kenichi Yokouchi
  • Publication number: 20160343584
    Abstract: Flash lamps connected to short-pulse circuits and flash lamps connected to long-pulse circuits are alternately arranged in a line. The duration of light emission from the flash lamps connected to the long-pulse circuits is longer than the duration of light emission from the flash lamps connected to the short-pulse circuits. A superimposing of a flash of light with a high peak intensity from the flash lamps that emit light for a short time and a flash of light with a gentle peak from the flash lamps that emit light for a long time can increase the temperature of even a deep portion of a substrate to an activation temperature or more without heating a shallow portion near the substrate surface more than necessary. This achieves the activation of deep junctions without causing substrate warpage or cracking.
    Type: Application
    Filed: August 4, 2016
    Publication date: November 24, 2016
    Inventor: Kenichi Yokouchi
  • Publication number: 20160293424
    Abstract: First irradiation which causes an emission output from a flash lamp to reach its maximum value over a time period in the range of 1 to 20 milliseconds is performed to increase the temperature of a front surface of a semiconductor wafer from a preheating temperature to a target temperature for a time period in the range of 1 to 20 milliseconds. This achieves the activation of the impurities. Subsequently, second irradiation which gradually decreases the emission output from the maximum value over a time period in the range of 3 to 50 milliseconds is performed to maintain the temperature of the front surface within a ±25° C. range around the target temperature for a time period in the range of 3 to 50 milliseconds. This prevents the occurrence of process-induced damage while suppressing the diffusion of the impurities.
    Type: Application
    Filed: April 29, 2016
    Publication date: October 6, 2016
    Inventors: Kazuhiko FUSE, Shinichi Kato, Kenichi Yokouchi
  • Patent number: 9449825
    Abstract: A first flash heating is performed in which a lower flash lamp irradiates a back surface of a semiconductor wafer with flashes of light, so that heat conduction from the back surface to a surface of the semiconductor wafer raises the temperature of the surface from the room temperature to an intermediate temperature. Then, a second flash heating is performed in which an upper flash lamp irradiates the surface of the semiconductor wafer with flashes of light, to raise the temperature of the surface of the semiconductor wafer from the intermediate temperature to a target temperature. Since only the irradiation with flashes of light emitted from the lower flash lamp and the upper flash lamp is used to cause the semiconductor wafer having the room temperature to reach the target temperature, all heat treatments can be completed in an extremely short time of one second or less.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: September 20, 2016
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Kenichi Yokouchi
  • Patent number: 9437456
    Abstract: Flash lamps connected to short-pulse circuits and flash lamps connected to long-pulse circuits are alternately arranged in a line. The duration of light emission from the flash lamps connected to the long-pulse circuits is longer than the duration of light emission from the flash lamps connected to the short-pulse circuits. A superimposing of a flash of light with a high peak intensity from the flash lamps that emit light for a short time and a flash of light with a gentle peak from the flash lamps that emit light for a long time can increase the temperature of even a deep portion of a substrate to an activation temperature or more without heating a shallow portion near the substrate surface more than necessary. This achieves the activation of deep junctions without causing substrate warpage or cracking.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: September 6, 2016
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Kenichi Yokouchi
  • Publication number: 20160247692
    Abstract: First irradiation which causes an emission output from a flash lamp to reach its maximum value over a time period in the range of 1 to 20 milliseconds is performed to increase the temperature of a front surface of a semiconductor wafer from a preheating temperature to a target temperature for a time period in the range of 1 to 20 milliseconds. This achieves the activation of the impurities. Subsequently, second irradiation which gradually decreases the emission output from the maximum value over a time period in the range of 3 to 50 milliseconds is performed to maintain the temperature of the front surface within a ±25° C. range around the target temperature for a time period in the range of 3 to 50 milliseconds. This prevents the occurrence of process-induced damage while suppressing the diffusion of the impurities.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 25, 2016
    Inventors: Kazuhiko FUSE, Shinichi KATO, Kenichi YOKOUCHI
  • Patent number: 9343313
    Abstract: First irradiation which causes an emission output from a flash lamp to reach its maximum value over a time period in the range of 1 to 20 milliseconds is performed to increase the temperature of a front surface of a semiconductor wafer from a preheating temperature to a target temperature for a time period in the range of 1 to 20 milliseconds. This achieves the activation of the impurities. Subsequently, second irradiation which gradually decreases the emission output from the maximum value over a time period in the range of 3 to 50 milliseconds is performed to maintain the temperature of the front surface within a ±25° C. range around the target temperature for a time period in the range of 3 to 50 milliseconds. This prevents the occurrence of process-induced damage while suppressing the diffusion of the impurities.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: May 17, 2016
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kazuhiko Fuse, Shinichi Kato, Kenichi Yokouchi
  • Patent number: 9330949
    Abstract: Three support members made of silicon carbide are provided fixedly on an inner periphery of the support ring. The support members are inclined at an angle in the range of 15 to 30 degrees with respect to a horizontal plane. With an outer peripheral edge of a semiconductor wafer supported by the three support members, a heating treatment is performed by irradiating the semiconductor wafer with halogen light from halogen lamps. Silicon carbide absorbs the halogen light better than quartz. The support members support the outer peripheral edge of the semiconductor wafer in point contacting relationship, so that the contact between a holder and the semiconductor wafer is minimized. This minimizes the disorder of the temperature distribution of the semiconductor wafer due to the support members to achieve the uniform heating of the semiconductor wafer.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 3, 2016
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kenichi Yokouchi, Hideo Nishihara
  • Publication number: 20150311080
    Abstract: A first flash heating is performed in which a flash lamp emits a first flashing light to a semiconductor wafer having been heated to a first preheating temperature equal to or lower than 650 degrees C. by a light emission from a halogen lamp so that the temperature of a surface of the semiconductor wafer reaches 1000 degrees C. or higher. Then, a second flash heating is performed in which a second flashing light is emitted to the semiconductor wafer having been further heated by a light emission of the halogen lamp. Performing the first flash heating can suppress diffusion of impurity in the subsequent second flash heating. In the second flash heating, the impurity is activated and introduced crystal defects are recovered.
    Type: Application
    Filed: July 2, 2015
    Publication date: October 29, 2015
    Inventor: Kenichi YOKOUCHI
  • Patent number: 9082728
    Abstract: A first flash heating is performed in which a flash lamp emits a first flashing light to a semiconductor wafer having been heated to a first preheating temperature equal to or lower than 650 degrees C. by a light emission from a halogen lamp so that the temperature of a surface of the semiconductor wafer reaches 1000 degrees C. or higher. Then, a second flash heating is performed in which a second flashing light is emitted to the semiconductor wafer having been further heated by a light emission of the halogen lamp. Performing the first flash heating can suppress diffusion of impurity in the subsequent second flash heating. In the second flash heating, the impurity is activated and introduced crystal defects are recovered.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 14, 2015
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Kenichi Yokouchi
  • Patent number: 8987123
    Abstract: After the completion of the transport of a semiconductor wafer into a chamber, the flow rate of nitrogen gas supplied into the chamber is decreased. In this state, a preheating treatment and flash irradiation are performed. The flow rate of nitrogen gas supplied into the chamber is increased when the temperature of the front surface of the semiconductor wafer is decreased to become equal to the temperature of the back surface thereof after reaching its maximum temperature by the irradiation of the substrate with a flash of light. Thereafter, the supply flow rate of nitrogen gas is maintained at a constant value until the semiconductor wafer is transported out of the chamber. This achieves the reduction in particles deposited on the semiconductor wafer while suppressing adverse effects resulting from the nonuniform in-plane temperature distribution of the semiconductor wafer.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Takahiro Yamada, Kenichi Yokouchi
  • Publication number: 20140329340
    Abstract: After a substrate implanted with impurities is heated to a preheating temperature, the front surface of the substrate is heated to a target temperature by irradiating the front surface of the substrate with a flash of light. Further, the flash irradiation is continued to maintain the temperature of the front surface near the target temperature for a predetermined time period. At this time, a flash irradiation time period in the flash heating step is made longer than a heat conduction time period required for heat conduction from the front surface of the substrate to the back surface thereof, and a difference in temperature between the front and back surfaces of the substrate is controlled to be always not more than one-half of an increased temperature from the preheating temperature to the target temperature during the flash irradiation.
    Type: Application
    Filed: October 18, 2012
    Publication date: November 6, 2014
    Inventor: Kenichi Yokouchi
  • Patent number: 8861944
    Abstract: In light-irradiation heating with a total irradiation time of one second or less, two-stage irradiation is performed, including a first stage of light irradiation of a semiconductor wafer, which irradiation produces an output waveform that reaches a peak at a given emission output; and a second stage of supplemental light irradiation of the semiconductor wafer, which irradiation is started after the peak, producing an emission output smaller than the above given emission output. The emission output in the second stage is two thirds or less than the above given emission output at the peak. The first-stage light-irradiation time is between 0.1 and 10 milliseconds, and the second-stage light-irradiation time is 5 milliseconds or more. This allows the temperature of the semiconductor wafer even at a somewhat greater depth below the surface to be raised to some extent while allowing the surface temperature to be maintained at a generally constant processing temperature.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: October 14, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Hiroki Kiyama, Kenichi Yokouchi
  • Patent number: 8859443
    Abstract: The first flash irradiation is performed on a semiconductor wafer preheated to 500° C. to heat a front surface of the semiconductor wafer. Thereafter, the second flash irradiation is performed to reheat the front surface of the semiconductor wafer before the temperature of the front surface of the semiconductor wafer becomes equal to the temperature of a back surface of the semiconductor wafer. Thus, the second flash irradiation is performed before the temperature of the front surface of the semiconductor wafer falls. Even if less energy is consumable by the second flash irradiation, the efficiency of heating of the front surface of the semiconductor wafer resulting from each iteration of the flash irradiation is improved.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: October 14, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Kenichi Yokouchi