Patents by Inventor Kenichiro Makino

Kenichiro Makino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100203706
    Abstract: It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Ryota IMAHAYASHI, Yoichi IIKUBO, Kenichiro MAKINO, Sho NAGAMATSU
  • Patent number: 7727846
    Abstract: It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: June 1, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Hideto Ohnuma, Ryota Imahayashi, Yoichi Iikubo, Kenichiro Makino, Sho Nagamatsu
  • Publication number: 20100081252
    Abstract: Suppression of generation of a stripe pattern (unevenness) when an SOI substrate is manufactured by a glass substrate and a single crystal semiconductor substrate bonded to each other. A single crystal semiconductor substrate is irradiated with ions so that a fragile region is formed in the single crystal semiconductor substrate; a depression or a projection is formed in a region of a surface of an insulating layer provided on the single crystal semiconductor substrate, the region corresponding to the periphery of the single crystal semiconductor substrate; the single crystal semiconductor substrate is bonded to a base substrate; thermal treatment is performed thereon to separate the single crystal semiconductor substrate at the fragile region, so that a single crystal semiconductor layer is formed over the base substrate; and the single crystal semiconductor layer in the region corresponding to the periphery is removed.
    Type: Application
    Filed: September 23, 2009
    Publication date: April 1, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Kenichiro Makino
  • Publication number: 20100069737
    Abstract: A non-contact ultrasonic tonometer for measuring intraocular pressure of an examinee's eye in a non-contact manner by use of an ultrasonic wave comprises: a probe that emits an ultrasonic beam to be allowed to enter the eye and detects the ultrasonic beam reflected by the eye; and an arithmetic section that determines the intraocular pressure by processing an output signal from the probe, the probe including a broadband air-coupled transducer that transmits and receives the ultrasonic beam having a broadband frequency component.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 18, 2010
    Applicant: NIDEK CO., LTD.
    Inventors: Masayuki Jinde, Tetsuyuki Miwa, Kenichiro Makino
  • Patent number: 7678668
    Abstract: It is object to provide a manufacturing method of an SOI substrate provided with a single-crystal semiconductor layer, even in the case where a substrate having a low allowable temperature limit, such as a glass substrate, is used and to manufacture a high-performance semiconductor device using such an SOI substrate. Light irradiation is performed on a semiconductor layer which is separated from a semiconductor substrate and bonded to a support substrate having an insulating surface, using light having a wavelength of 365 nm or more and 700 nm or less, and a film thickness d (nm) of the semiconductor layer which is irradiated with the light is made to satisfy d=?/2n×m±? (nm), when a light wavelength is ? (nm), a refractive index of the semiconductor layer is n, m is a natural number greater than or equal to 1 (m=1, 2, 3, 4, . . . ), and 0???10 is satisfied.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Tetsuya Kakehata, Kenichiro Makino
  • Publication number: 20100006940
    Abstract: An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
    Type: Application
    Filed: July 6, 2009
    Publication date: January 14, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tetsuya KAKEHATA, Hideto OHNUMA, Yoshiaki YAMAMOTO, Kenichiro MAKINO
  • Publication number: 20090325363
    Abstract: To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 31, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Kenichiro MAKINO, Yoichi IIKUBO, Masaharu NAGAI, Aiko SHIGA
  • Publication number: 20090137101
    Abstract: To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
    Type: Application
    Filed: October 8, 2008
    Publication date: May 28, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hideto OHNUMA, Yoichi IIKUBO, Yoshiaki YAMAMOTO, Kenichiro MAKINO
  • Publication number: 20090072343
    Abstract: A high-performance semiconductor device using an SOI substrate in which a low-heat-resistance substrate is used as a base substrate. Further, a high-performance semiconductor device formed without using chemical polishing. Further, an electronic device using the semiconductor device. An insulating layer over an insulating substrate, a bonding layer over the insulating layer, and a single-crystal semiconductor layer over the bonding layer are included, and the arithmetic-mean roughness of roughness in an upper surface of the single-crystal semiconductor layer is greater than or equal to 1 nm and less than or equal to 7 nm. Alternatively, the root-mean-square roughness of the roughness may be greater than or equal to 1 nm and less than or equal to 10 nm. Alternatively, a maximum difference in height of the roughness may be greater than or equal to 5 nm and less than or equal to 250 nm.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 19, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Yoichi IIKUBO, Yoshiaki YAMAMOTO, Kenichiro MAKINO, Akihisa SHIMOMURA, Eiji HIGA, Tatsuya MIZOI, Yoji NAGANO, Fumito ISAKA, Tetsuya KAKEHATA, Shunpei YAMAZAKI
  • Publication number: 20090011575
    Abstract: It is object to provide a manufacturing method of an SOI substrate provided with a single-crystal semiconductor layer, even in the case where a substrate having a low allowable temperature limit, such as a glass substrate, is used and to manufacture a high-performance semiconductor device using such an SOI substrate. Light irradiation is performed on a semiconductor layer which is separated from a semiconductor substrate and bonded to a support substrate having an insulating surface, using light having a wavelength of 365 nm or more and 700 nm or less, and a film thickness d (nm) of the semiconductor layer which is irradiated with the light is made to satisfy d=?/2n×m±? (nm), when a light wavelength is ? (nm), a refractive index of the semiconductor layer is n, m is a natural number greater than or equal to 1 (m=1, 2, 3, 4, . . . ), and 0???10 is satisfied.
    Type: Application
    Filed: June 17, 2008
    Publication date: January 8, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Tetsuya Kakehata, Kenichiro Makino
  • Publication number: 20090004764
    Abstract: To provide a method for manufacturing an SOI substrate provided with a single-crystal semiconductor layer which is suitable for practical use even when a substrate of which heat-resistant temperature is low, such as a glass substrate, is used, and to manufacture a highly reliable semiconductor device using such an SOI substrate. A semiconductor layer, which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface, is heated by supplying high energy by using at least one kind of particles having the high energy, and polishing treatment is performed on the heated surface of the semiconductor layer. At least part of a region of the semiconductor layer can be melted by the heat treatment by supplying high energy to reduce crystal defects in the semiconductor layer. Further, the surface of the semiconductor layer can be polished and planarized by the polishing treatment.
    Type: Application
    Filed: June 20, 2008
    Publication date: January 1, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Ryota Imahayashi, Yoichi Iikubo, Kenichiro Makino, Sho Nagamatsu
  • Publication number: 20090004878
    Abstract: It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
    Type: Application
    Filed: June 16, 2008
    Publication date: January 1, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Ryota Imahayashi, Yoichi Ilkubo, Kenichiro Makino, Sho Nagamatsu