Patents by Inventor Kenichiro Nomura

Kenichiro Nomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9863283
    Abstract: A steam turbine power plant includes a life consumption amount calculator configured to calculate life consumption amounts of a turbine rotor based on a value measured by a measurer, a thermal stress limit update timing determining device configured to determine a time when thermal stress limits are updated, an accumulated life consumption amount calculator configured to calculate accumulated life consumption amounts of the turbine rotor when the thermal stress limits are updated, a planned life consumption amount setting device configured to set planned life consumption amounts of the turbine rotor based on the accumulated life consumption amounts of the turbine rotor, a thermal stress limit calculator configured to calculate and update the thermal stress limits based on the planned life consumption amounts of the turbine rotor, and a plant command value calculator configured to calculate a plant command value based on the thermal stress limits.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: January 9, 2018
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Tatsuro Yashiki, Yukinori Katagiri, Takuya Yoshida, Miyuki Kawata, Yasuhiro Yoshida, Eunkyeong Kim, Kenichiro Nomura, Kazunori Yamanaka, Fumiyuki Suzuki, Norihiro Iyanaga
  • Patent number: 9771825
    Abstract: Provided is a steam turbine plant activation control device that can flexibly handle an initial state amount of a steam turbine plant and activate a steam turbine at a high speed. The activation control device 21 for the steam turbine plant includes a heat source device 1 configured to heat a low-temperature fluid using a heat source medium and generate a high-temperature fluid, a steam generator 2 for generating steam by thermal exchange with the high-temperature fluid, a steam turbine 3 to be driven by the steam, and adjusters 11, 12, 13, 14, 15 configured to adjust operation amounts of the plant.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: September 26, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yasuhiro Yoshida, Takuya Yoshida, Tatsuro Yashiki, Yukinori Katagiri, Eunkyeong Kim, Kenichiro Nomura, Kazunori Yamanaka, Fumiyuki Suzuki, Norihiro Iyanaga
  • Patent number: 9422826
    Abstract: A start control unit for a steam turbine plant, wherein inputting a measured value of a steam temperature fed to a steam turbine, a measured value or an estimated value of a rotor temperature of the steam turbine, and a measured value of a casing temperature of the steam turbine, and controlling a steam flow rate so as to increase the steam flow rate fed to the steam turbine when a difference between the steam temperature and the rotor temperature is smaller than a first regulated value and a difference between the rotor temperature and the casing temperature is a second regulated value or larger.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 23, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Eunkyeong Kim, Yasuhiro Yoshida, Takuya Yoshida, Tatsuro Yashiki, Nobuyuki Hokari, Kenichiro Nomura, Kazunori Yamanaka, Fumiyuki Suzuki, Masaaki Tomizawa, Yuichi Takahashi
  • Patent number: 9255494
    Abstract: Disclosed is a steam turbine power plant adapted to start operating safely even if prediction accuracy of its startup constraints cannot be obtained. The system calculates predictive values and current values of startup constraints of a steam turbine from process variables of plant physical quantities, next calculates in parallel both a first control input variable for a heat medium flow controller based on predictive values, and a second control input variable for a main steam control valve based on the current values, and while preferentially selecting the first control input variable, if the first control input variable is not calculated, selects the second control input variable instead. After the selection of at least one of the first and second control input variables, the system outputs an appropriate command value to the heat medium flow controller and the main steam control valve according to the kind of selected control input variable.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: February 9, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Tatsuro Yashiki, Yasuhiro Yoshida, Takuya Yoshida, Naohiro Kusumi, Kazunori Yamanaka, Kenichiro Nomura, Masaaki Tomizawa, Fumiyuki Suzuki, Yuichi Takahashi
  • Patent number: 9249682
    Abstract: Disclosed is a steam turbine power plant adapted to start operating very efficiently by highly accurate look-ahead control of a plurality of its startup constraints.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: February 2, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Yasuhiro Yoshida, Takuya Yoshida, Tatsuro Yashiki, Kenichiro Nomura, Kazunori Yamanaka, Masaaki Tomizawa, Yuichi Takahashi, Fumiyuki Suzuki
  • Publication number: 20150135712
    Abstract: A steam turbine plant activation control device is provided, which generates an activation schedule that enables a reduction in a time period required for the activation of a steam turbine plant without complex calculation such as prediction and calculation of a temperature and calculation of thermal stress.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Eunkyeong KIM, Yasuhiro YOSHIDA, Tatsuro YASHIKI, Yukinori KATAGIRI, Takuya YOSHIDA, Kenichiro NOMURA, Kazunori YAMANAKA, Fumiyuki SUZUKI, Norihiro IYANAGA
  • Publication number: 20150121874
    Abstract: Provided is a steam turbine plant activation control device that can flexibly handle an initial state amount of a steam turbine plant and activate a steam turbine at a high speed. The activation control device 21 for the steam turbine plant includes a heat source device 1 configured to heat a low-temperature fluid using a heat source medium and generate a high-temperature fluid, a steam generator 2 for generating steam by thermal exchange with the high-temperature fluid, a steam turbine 3 to be driven by the steam, and adjusters 11, 12, 13, 14, 15 configured to adjust operation amounts of the plant.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 7, 2015
    Inventors: Yasuhiro YOSHIDA, Takuya YOSHIDA, Tatsuro YASHIKI, Yukinori KATAGIRI, Eunkyeong KIM, Kenichiro NOMURA, Kazunori YAMANAKA, Fumiyuki SUZUKI, Norihiro IYANAGA
  • Publication number: 20150121872
    Abstract: Providing a steam turbine power plant that can be safely activated at a high speed while maintaining thermal stress at a level equal to or lower than a limit in consideration of operational results of the plant, and a method for activating the steam turbine power plant.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Tatsuro YASHIKI, Yukinori KATAGIRI, Takuya YOSHIDA, Miyuki KAWATA, Yasuhiro YOSHIDA, Eunkyeong KIM, Kenichiro NOMURA, Kazunori YAMANAKA, Fumiyuki SUZUKI, Norihiro IYANAGA
  • Publication number: 20140373540
    Abstract: A start control unit for a steam turbine plant, wherein inputting a measured value of a steam temperature fed to a steam turbine, a measured value or an estimated value of a rotor temperature of the steam turbine, and a measured value of a casing temperature of the steam turbine, and controlling a steam flow rate so as to increase the steam flow rate fed to the steam turbine when a difference between the steam temperature and the rotor temperature is smaller than a first regulated value and a difference between the rotor temperature and the casing temperature is a second regulated value or larger.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventors: Eunkyeong KIM, Yasuhiro YOSHIDA, Takuya YOSHIDA, Tatsuro YASHIKI, Nobuyuki HOKARI, Kenichiro NOMURA, Kazunori YAMANAKA, Fumiyuki SUZUKI, Masaaki TOMIZAWA, Yuichi TAKAHASHI
  • Publication number: 20140290250
    Abstract: Disclosed is a steam turbine power plant adapted to start operating very efficiently by highly accurate look-ahead control of a plurality of its startup constraints.
    Type: Application
    Filed: November 14, 2013
    Publication date: October 2, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Yasuhiro YOSHIDA, Takuya YOSHIDA, Tatsuro YASHIKI, Kenichiro NOMURA, Kazunori YAMANAKA, Masaaki TOMIZAWA, Yuichi TAKAHASHI, Fumiyuki SUZUKI
  • Publication number: 20140290249
    Abstract: Disclosed is a steam turbine power plant adapted to start operating safely even if prediction accuracy of its startup constraints cannot be obtained. The system calculates predictive values and current values of startup constraints of a steam turbine from process variables of plant physical quantities, next calculates in parallel both a first control input variable for a heat medium flow controller based on predictive values, and a second control input variable for a main steam control valve based on the current values, and while preferentially selecting the first control input variable, if the first control input variable is not calculated, selects the second control input variable instead. After the selection of at least one of the first and second control input variables, the system outputs an appropriate command value to the heat medium flow controller and the main steam control valve according to the kind of selected control input variable.
    Type: Application
    Filed: November 12, 2013
    Publication date: October 2, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Tatsuro YASHIKI, Yasuhiro YOSHIDA, Takuya YOSHIDA, Naohiro KUSUMI, Kazunori YAMANAKA, Kenichiro NOMURA, Masaaki TOMIZAWA, Fumiyuki SUZUKI, Yuichi TAKAHASHI
  • Publication number: 20140260254
    Abstract: A steam turbine power plant includes heat-source equipment that heats a low-temperature flow by applying a heat medium and thus generates a high-temperature flow, a steam generator using the high-temperature flow generated by the heat-source equipment, a steam turbine driven by the steam generated by the steam generator, an electric generator that converts rotational motive power of the steam turbine into electric power, a heat-medium controller that controls a supply rate of the heat medium supplied to the heat source equipment, a low-temperature flow controller that controls a supply rate of the low-temperature flow supplied to the heat-source equipment, a prediction device that predicts startup constraints of the steam turbine from control input variables of the controllers when the steam turbine is started, and a control input variables setter so as to prevent data predictions by the prediction device from exceeding limit values of startup constraints.
    Type: Application
    Filed: November 12, 2013
    Publication date: September 18, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Yasuhiro YOSHIDA, Takuya YOSHIDA, Tatsuro YASHIKI, Naohiro KUSUMI, Kenichiro NOMURA, Kazunori YAMANAKA, Masaaki TOMIZAWA, Yuichi TAKAHASHI, Fumiyuki SUZUKI
  • Patent number: 6628021
    Abstract: A motor 12 includes a cylindrical rotor 20, a stator 19 arranged at a predetermined distance from an outer periphery of the rotor 20, and a position sensor 23 for detecting a rotational position of the rotor 20, wherein the stator 19 includes a stator core 19a and a plurality of stator windings 19b arranged along a circumferential direction of the stator core 19a at substantially equal distances from one another. A shield plate 26 for shielding magnetic flux from the stator windings 19b to the position sensor 23 is mounted against the stator core 19a. Magnetic flux from the stator windings pass through a closed loop starting from the stator windings 19b through the stator core 19a and the shield plate 26 and back to the stator windings to prevent the magnetic flux leakage from the stator windings 19b from flowing to another member. With this arrangement, the magnetic flux leakage from the stator windings does not affect the position sensor (magnetic sensor) which detects the rotational position of the rotor.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: September 30, 2003
    Assignee: Aisin AW Co., Ltd.
    Inventors: Keiichi Shinohara, Yasuo Yamaguchi, Kenichiro Nomura, Satoru Wakuta
  • Patent number: 6419453
    Abstract: The main object of the present invention is to provide a steam turbine rotor shaft whose high-temperature strength is excellent at a selected temperature of 650 degrees C. A steam turbine rotor shaft comprising 0.05% to 0.20% by weight of carbon, 0.20% or less by weight of silicon, 0.05% to 1.5% by weight of manganese, 0.01% to 1.0% by weight of nickel, 9.0% to 13.0% by weight of chrome, 0.05% to 2.0% by weight of molybdenum, 0.5% to 5.0% by weight of tungsten, 0.05% to 0.30% by weight of vanadium, 0.01% to 0.20% by weight of niobium, 0.5% to 10.0% by weight of cobalt, 0.01% to 0.1% by weight of nitrogen, 0.001% to 0.030% by weight of boron, 0.0005% to 0.006% by weight of aluminum, and the remaining parts substantially comprising iron and inevitable impurities.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: July 16, 2002
    Assignees: Hitachi, Ltd., The Japan Steel Works, Ltd.
    Inventors: Yutaka Fukui, Hiroyuki Doi, Masahiko Arai, Ryo Hiraga, Kenichiro Nomura, Toshio Fujita, Yasuhiko Tanaka
  • Publication number: 20010041137
    Abstract: The main object of the present invention is to provide a steam turbine rotor shaft whose high-temperature strength is excellent at a selected temperature of 650 degrees C.
    Type: Application
    Filed: March 5, 2001
    Publication date: November 15, 2001
    Inventors: Yutaka Fukui, Hiroyuki Doi, Masahiko Arai, Ryo Hiraga, Kenichiro Nomura, Toshio Fujita, Yasuhiko Tanaka
  • Publication number: 20010013731
    Abstract: A motor 12 includes a cylindrical rotor 20, a stator 19 arranged at a predetermined distance from an outer periphery of the rotor 20, and a position sensor 23 for detecting a rotational position of the rotor 20, wherein the stator 19 includes a stator core 19a and a plurality of stator windings 19b arranged along a circumferential direction of the stator core 19a at substantially equal distances from one another. A shield plate 26 for shielding magnetic flux from the stator windings 19b to the position sensor 23 is mounted against the stator core 19a. Magnetic flux from the stator windings pass through a closed loop starting from the stator windings 19b through the stator core 19a and the shield plate 26 and back to the stator windings to prevent the magnetic flux leakage from the stator windings 19b from flowing to another member. With this arrangement, the magnetic flux leakage from the stator windings does not affect the position sensor (magnetic sensor) which detects the rotational position of the rotor.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 16, 2001
    Inventors: Keiichi Shinohara, Yasuo Yamaguchi, Kenichiro Nomura, Satoru Wakuta
  • Patent number: 4898617
    Abstract: A working material for construction or repair comprising (A) a mixture of 0.5 to 30% by weight of (a-1) a hydroxide of a divalent or higher basic metal, 10 to 99% by weight of (a-2) an aggregate and 0.5 to 70% of (a-3) a bituminous substance, the total amount of these materials (a-1), (a-2) and (a-3) being 100% by weight, and covering the mixture (A), (C) oxidized rosin or a mixture of (C) oxidized rosin with (D) a compound containing more than one carboxy group per molecule on an average and/or (B) a liquid hydrocarbon or a vegetable oil.
    Type: Grant
    Filed: September 28, 1988
    Date of Patent: February 6, 1990
    Assignees: Dainippon Ink & Chemicals, Inc., Taisei Road Construction Co., Ltd.
    Inventors: Masatoshi Motomura, Ichiro Muramatsu, Noboru Okoshi, Yoshitami Araki, Kenichiro Nomura, Takehisa Kozai, Hiroshi Mita
  • Patent number: 4626562
    Abstract: An epoxy resin composition is provided consisting essentially of(a) an epoxy compound having at least two epoxy groups in each of its molecules,(b) an ester of a mercaptoalkylcarboxylic acid having on an average more than two thiol groups in each of its molecules and in which the number of carbon atoms of the alkylene groups between the ester groups and the thiol groups is in excess of one on an average, and(c) a tertiary amine-type curing accelerator.This resin composition is used for new construction or repairs either as such or in the form of a construction material obtained by mixing this composition with aggregates and optionally with additives.
    Type: Grant
    Filed: June 7, 1985
    Date of Patent: December 2, 1986
    Assignees: Dainippon Ink & Chemicals, Inc., Taisei Road Construction Co., Ltd.
    Inventors: Masatoshi Motomura, Niichi Toyama, Noboru Okoshi, Yoshitami Araki, Kenichiro Nomura, Takehisa Kozai
  • Patent number: 4116402
    Abstract: A passenger restraining belt retractor for winding up two restraining belts on a single retractor shaft over the other including a base, a retractor shaft rotatably supported by said base for winding up the belts during retraction, a guide, a roller which engages with and presses against the guide one of the belts, the roller being arranged and configured to rotate as the other one of the two belts is extended thereby insuring that both belts are extended simultaneously.
    Type: Grant
    Filed: July 25, 1977
    Date of Patent: September 26, 1978
    Assignees: Toyota Jidosha Kogyo Kabushiki Kaisha, Kabushiki Kaisha Tokai Rika Denki Seisakusho
    Inventors: Kenichiro Nomura, Mamoru Mori, Jun Yasumatsu, Tatsushi Kubota, Sadao Hachisuka, Kazuhisa Tatematsu