Patents by Inventor Kenji Goto

Kenji Goto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11358678
    Abstract: A control system includes a detection device and an electronic controller. The detection device is configured to detect passenger information related to at least one passenger of a human-powered vehicle driven by a driver of the human-powered vehicle in which the at least one passenger is different from the driver. The electronic controller is configured to control at least one component of the human-powered vehicle in accordance with the passenger information.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: June 14, 2022
    Assignee: Shimano Inc.
    Inventors: Satoshi Shahana, Noriko Masuta, Azusa Yamazaki, Megumi Nakabo, Takehiko Nakajima, Fumihide Numata, Hiroshi Fujita, Kenji Goto
  • Patent number: 11345986
    Abstract: The present invention provides an alloy for medical use including an Au—Pt alloy, in which the Au—Pt alloy has a Pt concentration of 24 mass % or more and less than 34 mass % with the balance being Au, and has at least a material structure in which a Pt-rich phase having a Pt concentration higher than that of an ?-phase is distributed in an ?-phase matrix, the Pt-rich phase has a Pt concentration that is 1.2 to 3.8 times the Pt concentration of the ?-phase, and the Pt-rich phase has an area ratio of 1 to 22% in any cross-section. This alloy is an artifact-free alloy material that exhibits excellent compatibility with a magnetic field environment such as an MRI and has magnetic susceptibility of ±4 ppm with respect to magnetic susceptibility of water.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: May 31, 2022
    Assignees: TANAKA KIKINZOKU KOGYO K.K., KYOTO UNIVERSITY
    Inventors: Kunihiro Shima, Kenji Goto, Yasushi Masahiro, Asaka Ueno, Hiroo Iwata, Ryusuke Nakai, Tomonobu Kodama
  • Patent number: 11323140
    Abstract: An object of the present disclosure is to prevent an output level of an analog signal from exceeding a predetermined upper limit value, in a module that adjusts a level of the analog signal. According to the present disclosure, there is provided a signal generation apparatus including an RF base module (12) that converts a digital base band signal for testing into an intermediate frequency (IF) signal and outputs the IF signal, and a control unit (18), in which the RF base module is connected to an RF converter (20) which outputs an analog RF signal obtained by frequency-converting the IF signal, and the control unit clips the IF signal output from the RF base module based on an output level of the analog RF signal output from the RF converter.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: May 3, 2022
    Assignee: ANRITSU CORPORATION
    Inventors: Hirofumi Ono, Ryo Inomata, Kenji Goto, Mayfor Dangkiw
  • Publication number: 20220107354
    Abstract: A receiving device includes a reception unit that samples a sample signal from a DUT 2; an FFT processing unit 21 that performs an FFT process by multiplying the sample signal by a window function; an FFT length setting unit 34 that, when the signal length of the signal to be measured is shorter than the first FFT length conforming to the communication standard, instead of the first FFT length, sets a second FFT length shorter than the signal length of the signal to be measured, as an FFT length of the FFT process; and a window function setting unit 35 that, when the signal length of the signal to be measured is shorter than the first FFT length, instead of a first window function, sets an asymmetric second window function having a peak separated from a center of a window section, as the window function.
    Type: Application
    Filed: September 21, 2021
    Publication date: April 7, 2022
    Inventors: Takasumi IKEBE, Kenji GOTO, Mayfor DANGKIW
  • Publication number: 20220109602
    Abstract: A receiving device includes a reception unit 10 that samples a signal to be measured a transmitted from a DUT 2 and acquires a sample signal d; an FFT processing unit 21 that performs an FFT process by multiplying the sample signal; a signal length calculation unit 31 that calculates a signal length of the signal to be measured from the sample signal; a comparing unit 33 that compares the calculated signal length of the signal to be measured with a first FFT length conforming to a communication standard; and an FFT length setting unit 34 that, when as a result of the comparison by the comparing unit, the signal length is shorter than the first FFT length, sets a second FFT length shorter than the signal length of the signal to be measured, as the FFT length of the FFT process by the FFT processing unit.
    Type: Application
    Filed: September 22, 2021
    Publication date: April 7, 2022
    Inventors: Takasumi IKEBE, Kenji GOTO, Mayfor DANGKIW
  • Publication number: 20220089837
    Abstract: A material for a hot melt extrusion method contains at least a cellulose derivative and an additive. The cellulose derivative is cellulose acetate propionate and when a degree of substitution of an acetyl group is X and a degree of substitution of a propionyl group is Y, the cellulose derivative satisfies the following Expression (1) and Expression (2); and the additive contains a plasticizer and a compound A containing a partial structure having a NICS value in the range of ?14 or more and ?10 or less, 2.0 ? X + Y ? 3.0 Expression ? ? ( 1 ) 0.5 ? Y ? 2.6 .
    Type: Application
    Filed: January 27, 2020
    Publication date: March 24, 2022
    Inventors: Kazufumi YAMAZAKI, Yukihito NAKAZAWA, Kenji GOTO, Nobuo KUBO
  • Patent number: 11268168
    Abstract: The present invention provides an artifactless superelastic alloy including a Au—Cu—Al alloy, the superelastic alloy containing Cu in an amount of 20 atom % or more and 40 atom % or less, Al in an amount of 15 atom % or more and 25 atom % or less, and Au as a balance, the superelastic alloy having a bulk magnetic susceptibility of ?24 ppm or more and 6 ppm or less. The Ni-free superelastic alloy of the present invention is capable of exhibiting superelasticity in a normal temperature range, and hardly generated artifacts in a magnetic field environment. The alloy can be produced by setting a casting time in a melting and casting step to a fixed time, and hot-pressing an alloy after casting to make material structures homogeneous.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: March 8, 2022
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Hideki Hosoda, Akira Umise, Kenji Goto
  • Publication number: 20220042140
    Abstract: The present invention relates to a medical Au—Pt—Pd alloy including Au, Pt, Pd, and inevitable impurities. The Au—Pt—Pd alloy has an alloy composition inside a polygon (A1-A2-A3-A4) surrounded by straight lines connected at point A1 (Au: 53 atom %, Pt: 4 atom %, and Pd: 43 atom %), point A2 (Au: 70 atom %, Pt: 4 atom %, and Pd: 26 atom %), point A3 (Au: 69.9 atom %, Pt: 30 atom %, and Pd: 0.1 atom %), and point A4 (Au: 49.9 atom %, Pt: 50 atom %, and Pd: 0.1 atom %) in a Au—Pt—Pd ternary state diagram. In a metal structure of the alloy, at least one of a Au-rich phase and a Pt-rich phase is distributed, and the total of the area ratio of the Au-rich phase and the area ratio of the Pt-rich phase is 1.5% or more and 25.4% or less.
    Type: Application
    Filed: September 24, 2020
    Publication date: February 10, 2022
    Applicants: TANAKA KIKINZOKU KOGYO K.K., TOKUSHIMA UNIVERSITY
    Inventors: Michimasa OKUBO, Kenji GOTO, Kunihiro TANAKA, Kojiro SHIRAISHI, Kunihiro SHIMA, Yuya KATO, Kenichi HAMADA, Eiichi HONDA, Emi TAKEGAWA
  • Publication number: 20220017996
    Abstract: The present invention relates to an alloy for medical use, including Pt, Co, Cr, Ni, and Mo. The alloy includes 10 atom % or more and 30 atom % or less of Pt, 20 atom % or more and 31 atom % or less of Cr, 5 atom % or more and 24 atom % or less of Ni, 4 atom % or more and 8 atom % or less of Mo, the balance Co, and unavoidable impurities, and a ratio of the Ni content (CNi) to the Pt content (CPt), CNi/CPt is 1.5 or less. The present invention can be applied to various kinds of devices for medical use, such as catheter, embolic coils, and guide wires, in addition to stents such as flow-diverter stents.
    Type: Application
    Filed: November 18, 2019
    Publication date: January 20, 2022
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Shubham YADAV, Yuya KATO, Kenji GOTO, Kunihiro SHIMA
  • Patent number: 11162908
    Abstract: Provided is a quality inspection method in which an inner state of a three-dimensional laminated molding can be quickly and easily inspected without destroying the three-dimensional laminated molding. To this end, the quality inspection method uses an X-ray Talbot imaging system 1 which creates a reconstructed image of an inspection object on the basis of a moire image obtained by using an X-ray detector to read X-rays which, after being radiated from an X-ray source 11a, have passed through: a plurality of grids in which a plurality of slits S are arranged in a direction perpendicular to the radiation axis direction of the X-ray; and an inspection object H placed on a subject table 13. The inspection object H is a three-dimensional laminated molding formed into a three-dimensional shape by laminating multiple layers of constituent materials.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: November 2, 2021
    Assignee: Konica Minolta, Inc.
    Inventors: Keisuke Mizoguchi, Mitsuharu Kitamura, Kenji Goto
  • Publication number: 20210328604
    Abstract: According to the present disclosure, there is provided a signal generation apparatus including: a base band module (11); a DA converter that converts digital base band signals into modulation signals corresponding to a plurality of cells; an RF converter (20) to which the modulation signals corresponding to the plurality of cells are input, and which outputs an RF signal obtained by frequency-converting the modulation signal; and an RF converter control unit (31), in which the RF converter control unit controls the base band module to reduce a power value of a digital base band signal corresponding to a predetermined cell, among the digital base band signals corresponding to the plurality of cells in the base band module so that an input level of the modulation signal input to the RF converter is equal to or lower than an input limit value of the RF converter.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Inventors: Kenji GOTO, Ryo INOMATA, Hirofumi ONO, Mayfor DANGKIW
  • Patent number: 11142092
    Abstract: A power supply system for a vehicle is provided, and the system may include: a charging inlet connected to a main battery and connectable to a power supply external to the vehicle; a voltage converter configured to step down a power of the main battery by a switching element and supply the stepped-down power to a sub-battery; and a controller configured to control the voltage converter, in which the controller is configured to slow down a switching speed of the switching element, as compared with when the main battery is not being charged, while the charging inlet is connected to the power supply and the main battery is being charged by the power supply.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: October 12, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Manabu Handa, Kenshi Yamanaka, Kenji Goto
  • Publication number: 20210297879
    Abstract: An object of the present invention is to provide a mobile terminal testing apparatus capable of improving operability. A mobile terminal testing apparatus according to the present invention is a mobile terminal testing apparatus (1) which uses one of a plurality of component carriers in carrier aggregation as a primary component carrier and the other component carriers as secondary component carriers, and makes a call connection with a mobile terminal (2) to test the carrier aggregation, the mobile terminal has a local oscillation frequency in a continuous frequency band from the primary component carrier to the secondary component carriers, and the input unit (15) collectively sets the desired parameters for the continuous frequency band.
    Type: Application
    Filed: March 17, 2021
    Publication date: September 23, 2021
    Inventors: Kenji GOTO, Takayuki AWANO
  • Publication number: 20210291434
    Abstract: The present invention provides a three-dimensional model that contains an olefin-based polymer and can be easily processed, and a three-dimensional modeling material for obtaining the same. In addition, an object of the present invention is to provide a three-dimensional modeling material that contains an olefin-based polymer and can impart a function to a three-dimensional model itself. Furthermore, another object of the present invention is to provide a three-dimensional model production method using a three-dimensional modeling material. A three-dimensional modeling material that solves the above problems is a material for forming a three-dimensional model using thermal energy and contains an olefin-based polymer and an organometallic complex.
    Type: Application
    Filed: July 8, 2019
    Publication date: September 23, 2021
    Applicant: Konica Minolta, Inc.
    Inventors: Masaharu SHIRAISHI, Takeshi KOJIMA, Kenji GOTO, Rie KATAKURA, Hiroshi KITA
  • Publication number: 20210234560
    Abstract: An object of the present disclosure is to prevent an output level of an analog signal from exceeding a predetermined upper limit value, in a module that adjusts a level of the analog signal. According to the present disclosure, there is provided a signal generation apparatus including an RF base module (12) that converts a digital base band signal for testing into an intermediate frequency (IF) signal and outputs the IF signal, and a control unit (18), in which the RF base module is connected to an RF converter (20) which outputs an analog RF signal obtained by frequency-converting the IF signal, and the control unit clips the IF signal output from the RF base module based on an output level of the analog RF signal output from the RF converter.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 29, 2021
    Inventors: Hirofumi ONO, Ryo INOMATA, Kenji GOTO, Mayfor DANGKIW
  • Publication number: 20210130724
    Abstract: Provided are a mineral base oil satisfying the following requirements (I) to (IV), which is excellent in safety and environmental aspects and has good compatibility with resin; a molded article formed of a resin composition containing the mineral base oil and a resin; and a method for producing the mineral base oil. Requirement (I): The flash point is 200° C. or higher. Requirement (II): The pour point is 0° C. or lower. Requirement (III); The aromatic content (% CA) is 2.6 or more. Requirement (IV): The toluene content, as measured according to JIS A1965:2015, is more than 0 ?g/m3 and less than 500 ?g/m3.
    Type: Application
    Filed: November 12, 2018
    Publication date: May 6, 2021
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Kenji GOTO, Hitoshi ROKKAKU, Yuta YAMAMOTO
  • Publication number: 20210109038
    Abstract: Provided is a quality inspection method in which an inner state of a three-dimensional laminated molding can be quickly and easily inspected without destroying the three-dimensional laminated molding. To this end, the quality inspection method uses an X-ray Talbot imaging system 1 which creates a reconstructed image of an inspection object on the basis of a moire image obtained by using an X-ray detector to read X-rays which, after being radiated from an X-ray source 11a, have passed through: a plurality of grids in which a plurality of slits S are arranged in a direction perpendicular to the radiation axis direction of the X-ray; and an inspection object H placed on a subject table 13. The inspection object H is a three-dimensional laminated molding formed into a three-dimensional shape by laminating multiple layers of constituent materials.
    Type: Application
    Filed: March 30, 2018
    Publication date: April 15, 2021
    Applicant: Konica Minolta, Inc.
    Inventors: Keisuke MIZOGUCHI, Mitsuharu KITAMURA, Kenji GOTO
  • Publication number: 20210047717
    Abstract: The present invention provides an alloy for medical use including an Au—Pt alloy, in which the Au—Pt alloy has a Pt concentration of 24 mass % or more and less than 34 mass % with the balance being Au, and has at least a material structure in which a Pt-rich phase having a Pt concentration higher than that of an ?-phase is distributed in an ?-phase matrix, the Pt-rich phase has a Pt concentration that is 1.2 to 3.8 times the Pt concentration of the ?-phase, and the Pt-rich phase has an area ratio of 1 to 22% in any cross-section. This alloy is an artifact-free alloy material that exhibits excellent compatibility with a magnetic field environment such as an MRI and has magnetic susceptibility of ±4 ppm with respect to magnetic susceptibility of water.
    Type: Application
    Filed: October 22, 2020
    Publication date: February 18, 2021
    Inventors: KUNIHIRO SHIMA, KENJI GOTO, YASUSHI MASAHIRO, ASAKA UENO, HIROO IWATA, RYUSUKE NAKAI, TOMONOBU KODAMA
  • Publication number: 20210010120
    Abstract: The present invention provides a shape-memory alloy including a Au—Cu—Al alloy having 20 at % or more and 40 at % or less Cu and 15 at % or more and 30 at % or less Al, with the balance being Au and inevitable impurities. The shape-memory alloy has a Vickers hardness of 360 Hv or less. The Au—Cu—Al alloy of the present invention is an alloy capable of developing both biocompatibility and a shape-memory effect, and further capable of achieving artifactlessness in a magnetic environment. The Au—Cu—Al alloy can be produced by heat-treating a clad material formed of a combination of a hollow material made of a Au—Cu alloy and a core material made of metallic Al at 500° C. or more and 700° C. or less.
    Type: Application
    Filed: February 28, 2019
    Publication date: January 14, 2021
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Hideki HOSODA, Akira UMISE, Kenji GOTO
  • Patent number: 10883162
    Abstract: The present invention provides an alloy for medical use including an Au—Pt alloy, in which the Au—Pt alloy has a Pt concentration of 24 mass % or more and less than 34 mass % with the balance being Au, and has at least a material structure in which a Pt-rich phase having a Pt concentration higher than that of an ?-phase is distributed in an ?-phase matrix, the Pt-rich phase has a Pt concentration that is 1.2 to 3.8 times the Pt concentration of the ?-phase, and the Pt-rich phase has an area ratio of 1 to 22% in any cross-section. This alloy is an artifact-free alloy material that exhibits excellent compatibility with a magnetic field environment such as an MRI and has magnetic susceptibility of ±4 ppm with respect to magnetic susceptibility of water.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: January 5, 2021
    Assignees: TANAKA KIKINZOKU KOGYO K.K., KYOTO UNIVERSITY
    Inventors: Kunihiro Shima, Kenji Goto, Yasushi Masahiro, Asaka Ueno, Hiroo Iwata, Ryusuke Nakai, Tomonobu Kodama