Patents by Inventor Kenji Kiyama

Kenji Kiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10591156
    Abstract: A burner includes: an inner gas nozzle which extends along an axis while surrounding the axis, and which is capable of supplying a furnace with an inner combustion oxygen containing gas; a fuel supply nozzle surrounding the inner gas nozzle as seen in a direction along the axis, the fuel supply nozzle being capable of supplying the furnace with a fluid mixture of a solid powder fuel and a carrier gas; an outer gas nozzle surrounding the fuel supply nozzle as seen in the direction along the axis, the outer gas nozzle being capable of supplying the furnace with an outer combustion oxygen containing gas; and a flow-velocity-ratio adjustment apparatus capable of adjusting a relative flow velocity ratio of a discharge flow velocity of the inner combustion oxygen containing gas to a discharge flow velocity of the outer combustion oxygen containing gas.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: March 17, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Kenji Kiyama, Toshimitsu Ichinose, Miki Shimogori, Toshihiko Mine, Kenji Yamamoto, Ryuichiro Tanaka, Akira Baba, Koji Kuramashi, Koutaro Fujimura, Keigo Matsumoto
  • Publication number: 20200056780
    Abstract: The present invention provides a solid fuel burner which ensures ignition performance and flame holding performance of a fuel nozzle. The present invention provides a solid fuel burner which achieves cost reduction by simplifying the structure of the fuel nozzle, for example, and which ensures the ignition performance and flame holding performance of the fuel nozzle. Further, the present invention provides a burner which enables stable combustion by both solid fuel and oil combustion with the suppression of soot and dust and mist generated during the oil start-up envisaged.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 20, 2020
    Inventors: Junya WATANABE, Koji KURAMASHI, Akira BABA, Kosuke KITAKAZE, Kenichi OCHI, Kenji KIYAMA
  • Patent number: 10359193
    Abstract: In accordance with the flow distribution of combustion gas including an unburned portion, an after-air port (AAP) arranged downstream of the two-stage combustion burner can effectively reduce the unburned portion by dividing as appropriate so as to avoid interaction, and by mixing together, two types of after-air having functions of linearity and spreading. As the configuration of this AAP, a primary nozzle for supplying primary after-air and having a vertical height greater than the horizontal width is provided in the center in the opening of the AAP, a secondary nozzle for supplying secondary after-air is provided in the opening outside of the primary nozzle, and one or more secondary after-air guide vanes having a fixed or variable tilt angle relative to the after-air port center axis are provided at the outlet of the said secondary nozzle to deflect and supply the secondary after-air horizontally to the left or right.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 23, 2019
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Kenji Kiyama, Miki Shimogori, Toshihiko Mine, Satoshi Tadakuma, Kenichi Ochi, Koji Kuramashi, Yusuke Ochi, Akira Baba, Yuki Kondo
  • Publication number: 20180142887
    Abstract: A burner includes: an inner gas nozzle which extends along an axis while surrounding the axis, and which is capable of supplying a furnace with an inner combustion oxygen containing gas; a fuel supply nozzle surrounding the inner gas nozzle as seen in a direction along the axis, the fuel supply nozzle being capable of supplying the furnace with a fluid mixture of a solid powder fuel and a carrier gas; an outer gas nozzle surrounding the fuel supply nozzle as seen in the direction along the axis, the outer gas nozzle being capable of supplying the furnace with an outer combustion oxygen containing gas; and a flow-velocity-ratio adjustment apparatus capable of adjusting a relative flow velocity ratio of a discharge flow velocity of the inner combustion oxygen containing gas to a discharge flow velocity of the outer combustion oxygen containing gas.
    Type: Application
    Filed: May 30, 2016
    Publication date: May 24, 2018
    Applicant: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Kenji Kiyama, Toshimitsu Ichinose, Miki Shimogori, Toshihiko Mine, Kenji Yamamoto, Ryuichiro Tanaka, Akira Baba, Koji Kuramashi, Koutaro Fujimura, Keigo Matsumoto
  • Patent number: 9599335
    Abstract: A solid-fuel burner includes: a venturi having a constricting portion where the transverse cross section of a fuel passage is reduced in a fuel nozzle for supplying a solid fuel; and a fuel concentrator for diverting the flow in the nozzle outward in the wake side of the venturi, and the nozzle is formed so that (a) the aperture in the vicinity of an opening portion of a boiler furnace wall surface has a flat shape, (b) cross-sectional shape thereof orthogonal to a nozzle center axis C on the outer peripheral wall of the nozzle is circular in a transverse cross section up to the constricting portion of the venturi, (c) a portion that has a gradually increasing degree of flatness is provided between the constricting portion and the opening portion, and (d) the flat shape in the opening portion is where the degree of flatness reaches a maximum.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: March 21, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Toshihiko Mine, Kenji Kiyama, Miki Shimogori, Satoshi Tadakuma, Hitoshi Wakamatsu, Noriyuki Ohyatsu, Koji Kuramashi, Kenichi Ochi, Yusuke Ochi, Hirofumi Okazaki
  • Patent number: 9513000
    Abstract: An oxygen combustion system includes a boiler to burn fuel using combustion gas composed of oxygen-rich gas and circulating flue gas, a dust remover disposed in a flue through which flue gas discharged from the boiler flows, a second flue leading the combustion gas to the boiler, the combustion gas being made by mixing the circulating flue gas extracted downstream of the dust remover with the oxygen-rich gas, a combustion gas heater exchanging heat between the flue gas flowing between the boiler and dust remover and the combustion gas flowing through the second flue, and a flue gas cooler disposed between the heater and the dust remover to cool the flue gas. A control unit controls at least one of a flow rate and cooling medium temperature of the flue gas cooler such that temperature of the flue gas introduced into the dust remover will be between 90° C. and 140° C.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: December 6, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Takahiro Marumoto, Hidehisa Yoshizako, Kenji Kiyama, Kenso Arita, Pauli Dernjatin
  • Publication number: 20160146463
    Abstract: In accordance with the flow distribution of combustion gas including an unburned portion, an after-air port (AAP) arranged downstream of the two-stage combustion burner can effectively reduce the unburned portion by dividing as appropriate so as to avoid interaction, and by mixing together, two types of after-air having functions of linearity and spreading. As the configuration of this AAP, a primary nozzle for supplying primary after-air and having a vertical height greater than the horizontal width is provided in the center in the opening of the AAP, a secondary nozzle for supplying secondary after-air is provided in the opening outside of the primary nozzle, and one or more secondary after-air guide vanes having a fixed or variable tilt angle relative to the after-air port center axis are provided at the outlet of the said secondary nozzle to deflect and supply the secondary after-air horizontally to the left or right.
    Type: Application
    Filed: July 8, 2014
    Publication date: May 26, 2016
    Inventors: Kenji KIYAMA, Miki SHIMOGORI, Toshihiko MINE, Satoshi TADAKUMA, Kenichi OCHI, Koji KURAMASHI, Yusuke OCHI, Akira BABA, Yuki KONDO
  • Publication number: 20150241058
    Abstract: A solid-fuel burner includes: a venturi having a constricting portion where the transverse cross section of a fuel passage is reduced in a fuel nozzle for supplying a solid fuel; and a fuel concentrator for diverting the flow in the nozzle outward in the wake side of the venturi, and the nozzle is formed so that (a) the aperture in the vicinity of an opening portion of a boiler furnace wall surface has a flat shape, (b) cross-sectional shape thereof orthogonal to a nozzle center axis C on the outer peripheral wall of the nozzle is circular in a transverse cross section up to the constricting portion of the venturi, (c) a portion that has a gradually increasing degree of flatness is provided between the constricting portion and the opening portion, and (d) the flat shape in the opening portion is where the degree of flatness reaches a maximum.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 27, 2015
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Toshihiko Mine, Kenji Kiyama, Miki Shimogori, Satoshi Tadakuma, Hitoshi Wakamatsu, Noriyuki Ohyatsu, Koji Kuramashi, Kenichi Ochi, Yusuke Ochi, Hirofumi Okazaki
  • Publication number: 20140116359
    Abstract: A burner including a fuel-containing fluid supply nozzle which supplies a fuel-containing fluid, from a connecting part in a fluid transfer flow passage for transferring a fuel-containing fluid including a fuel and a medium for transfer of the fuel, toward an outlet part provided on a furnace wall surface. The nozzle in its cross section perpendicular to the direction of flow of the fluid has a rectangular, elliptical, or substantially elliptical form having major and minor axis parts from a connecting part in the fluid transfer flow passage toward the outlet part provided on the furnace wall surface. Further, the area of a cross section perpendicular to the direction of flow of the fluid is gradually increased from the connecting part in the fluid transfer flow passage toward the outlet part. Air supply nozzle(s) for supplying combustion air are provided on the outer peripheral part of the nozzle.
    Type: Application
    Filed: December 24, 2013
    Publication date: May 1, 2014
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Kenji KIYAMA, Akira BABA, Takanori YANO, Osamu OKADA, Hirofumi OKAZAKI, Kouji KURAMASHI
  • Publication number: 20130340659
    Abstract: In a boiler having plurality of burners arranged on a furnace wall of a furnace, each burner includes a cylindrical fuel nozzle for injecting a mixture of fuel and carrier gas therefor into the furnace; one or more cylindrical air nozzles provided on the outer circumference of the nozzle for injecting combustion air into the furnace, and a wind box for supplying combustion air to the nozzles in common. The wind box is provided with openings through which combustion air flows in from one direction perpendicular to the axial direction of the burner, and is partitioned by a partition wall to form plurality of parallel flow paths for the air flowing in through the openings. Some of the plurality of flow paths are connected to an upper part of the combustion air nozzle, and the other flow paths are connected to a lower part of the nozzle.
    Type: Application
    Filed: February 22, 2011
    Publication date: December 26, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yusuke Ochi, Kouji Kuramashi, Kenji Kiyama, Hirofumi Okazaki
  • Publication number: 20130291772
    Abstract: An oxygen combustion system includes a boiler to burn fuel using combustion gas composed of oxygen-rich gas and circulating flue gas, a dust remover disposed in a flue through which flue gas discharged from the boiler flows, a second flue leading the combustion gas to the boiler, the combustion gas being made by mixing the circulating flue gas extracted downstream of the dust remover with the oxygen-rich gas, a combustion gas heater exchanging heat between the flue gas flowing between the boiler and dust remover and the combustion gas flowing through the second flue, and a flue gas cooler disposed between the heater and the dust remover to cool the flue gas. A control unit controls at least one of a flow rate and cooling medium temperature of the flue gas cooler such that temperature of the flue gas introduced into the dust remover will be between 90° C. and 140° C.
    Type: Application
    Filed: September 30, 2011
    Publication date: November 7, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Toshihiko Mine, Kenji Kiyama, Koji Kuramashi, Kenichi Ochi, Hirofumi Okazaki
  • Publication number: 20130244190
    Abstract: An oxygen combustion system includes a boiler to burn fuel using combustion gas composed of oxygen-rich gas and circulating flue gas, a dust remover disposed in a flue through which flue gas discharged from the boiler flows, a second flue leading the combustion gas to the boiler, the combustion gas being made by mixing the circulating flue gas extracted downstream of the dust remover with the oxygen-rich gas, a combustion gas heater exchanging heat between the flue gas flowing between the boiler and dust remover and the combustion gas flowing through the second flue, and a flue gas cooler disposed between the heater and the dust remover to cool the flue gas. A control unit controls at least one of a flow rate and cooling medium temperature of the flue gas cooler such that temperature of the flue gas introduced into the dust remover will be between 90° C. and 140° C.
    Type: Application
    Filed: September 29, 2011
    Publication date: September 19, 2013
    Applicants: FORTUM CORPORATION, BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Takahiro Marumoto, Hidehisa Yoshizako, Kenji Kiyama, Kenso Arita, Pauli Dernjatin
  • Patent number: 7922480
    Abstract: The invention provides a combustion apparatus which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible. In a combustion apparatus provided with a burner burning a fuel within a furnace in a theoretical air ratio or less, and an air port supplying a combustion air for a shortfall in the burner, a supply apparatus for supplying a nitrogen oxide generation inhibiting gas is provided in a mixing region between the both or near the mixing region. Further, the invention provides a wind box which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: April 12, 2011
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Kenji Kiyama, Shigeki Morita, Osamu Okada, Koji Kuramashi, Takanori Yano, Kenichi Ochi, Akira Baba, Miki Shimogori, Takeru Fukuchi, Hiroshi Yamaguchi, Hironobu Kobayashi, Masayuki Taniguchi, Hirofumi Okazaki, Kenji Yamamoto
  • Publication number: 20110053102
    Abstract: An air nozzle provided on the outer side of a fuel nozzle of a solid fuel burner is divided into a plurality of regions, and has means for regulating air flow rates in nozzles divided in the upper and lower direction. The nozzles (regions) are connected to only the nozzle wall and have obstacles in the circumferential direction, dividing the inside of the nozzle into a plurality of regions, and by changing air flow rates in the respective regions in the outermost peripheral air nozzle, a deviation in momentum is caused in the vertical direction of the burner, a flame forming position is changed, and a combustion gas temperature at the furnace outlet, temperatures of a heat transfer tube installed on the furnace wall surface and a fluid flowing in the heat transfer tube or temperatures of heat transfer tubes provided in the furnace and a flue on the downstream side and temperatures of fluids flowing in the heat transfer tubes are controlled to be constant.
    Type: Application
    Filed: April 3, 2009
    Publication date: March 3, 2011
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Hirofumi Okazaki, Kenji Kiyama, Yusuke Ochi, Kouji Kuramashi
  • Patent number: 7878130
    Abstract: A overfiring air port of the present invention is to supply an incomplete combustion region with air making up for combustion-shortage, in a furnace in which the incomplete combustion region less than stoichiometric ratio is formed by a burner. Furthermore, the airport is characterized by comprising: a nozzle mechanism for injecting air including an axial velocity component of an air flow and a radial velocity component directed to a center line of the airport; and a control mechanism for controlling a ratio of these velocity components.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 1, 2011
    Assignee: Babcock-Hitachi K.K.
    Inventors: Kenji Yamamoto, Hirofumi Okazaki, Masayuki Taniguchi, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba, Kenichi Ochi, Hisayuki Orita, Akihito Orii, Yuki Kamikawa, Kouji Kuramashi
  • Publication number: 20100269741
    Abstract: A solid fuel burner and its combustion method suited for encouraging fuel ignition and avoiding slugging caused by combustion ash, wherein a gas of low oxygen concentration (exhaust combustion gas) is used as a carrier gas of such a low grade solid fuel as brown coal. An additional air nozzle for jetting additional air having a velocity component in the circumferential direction of a fuel nozzle is provided in the fuel nozzle, thereby encouraging mixing between the fuel and air in the fuel nozzle. Further, the amount of air supplied from the additional air nozzle is adjusted in response to the difference in combustion loads. Under light load, the amount of air supplied from the additional air nozzle is increased so as to increase the oxygen concentration of the circulating flow formed downstream of the outside of the outlet of the fuel nozzle, whereby stable combustion is ensured.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: BABCOCK-HITACHI K.K.
    Inventors: Hirofumi OKAZAKI, Kenji YAMAMOTO, Kenji KIYAMA, Kouji KURAMASHI
  • Patent number: 7770528
    Abstract: A solid fuel burner and its combustion method suited for encouraging fuel ignition and avoiding slugging caused by combustion ash, wherein a gas of low oxygen concentration (exhaust combustion gas) is used as a carrier gas of such a low grade solid fuel as brown coal. An additional air nozzle for jetting additional air having a velocity component in the circumferential direction of a fuel nozzle is provided in the fuel nozzle, thereby encouraging mixing between the fuel and air in the fuel nozzle. Further, the amount of air supplied from the additional air nozzle is adjusted in response to the difference in combustion loads. Under light load, the amount of air supplied from the additional air nozzle is increased so as to increase the oxygen concentration of the circulating flow formed downstream of the outside of the outlet of the fuel nozzle, whereby stable combustion is ensured.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 10, 2010
    Assignee: Babcock- Hitachi K.K.
    Inventors: Hirofumi Okazaki, Kenji Yamamoto, Kenji Kiyama, Kouji Kuramashi
  • Patent number: 7681508
    Abstract: An after-air nozzle capable of reducing NOx and CO and a boiler equipped with such a nozzle are provided The after-air nozzle has a vena contracta such that an outside diameter of a flow passage diminishes towards the air-jetting port which supplies air to a boiler, and a changing apparatus changes a flow passage cross-sectional area of the vena contracta. A method of use of such an after-air nozzle and a boiler so equipped is also provided.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: March 23, 2010
    Assignee: Babcock-Hitachi K.K.
    Inventors: Masayuki Taniguchi, Kenji Yamamoto, Hirofumi Okazaki, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba
  • Publication number: 20100064986
    Abstract: The present invention provides a solid fuel burner, which, while rendering the capacity larger than that in the conventional art, can suppress an increase in an unignited region and thus can realize the prevention of an increase in NOx concentration in a combustion gas and the prevention of a lowering in combustion efficiency, and a combustion equipment and boiler including the burner. The burner includes a fuel-containing fluid supply nozzle (12) which supplies a fuel-containing fluid, from a connecting part in a fluid transfer flow passage (10) for transferring a fuel-containing fluid including a fuel and a medium for transfer of the fuel, toward an outlet part provided on the wall of a furnace (4).
    Type: Application
    Filed: March 27, 2007
    Publication date: March 18, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Kenji Kiyama, Akira Baba, Takanori Yano, Osamu Okada, Hirofumi Okazaki, Kouji Kuramashi
  • Patent number: 7553153
    Abstract: A solid-fuel burner comprising a fuel nozzle for injecting a mixed fluid with a mixture of solid fuel and air as a carrier gas thereof, a plurality of air nozzles provided on the outside of the fuel nozzle for surrounding the fuel nozzle; an end portion of an inner circumferential wall of the air nozzle located at least at the outermost circumference is outwardly expanded, and an inductive member provided at outlet of the air nozzle located at least on the outermost circumference so as to direct flow of air in the direction of outer circumference.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 30, 2009
    Assignee: Babcock - Hitachi K.K.
    Inventors: Hirofumi Okazaki, Kenji Yamamoto, Masayuki Taniguchi, Kouji Kuramashi, Kenji Kiyama, Takanori Yano