Patents by Inventor Kenji Kondou

Kenji Kondou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093311
    Abstract: It is intended to provide a kit or a device for the detection of breast cancer and a method for detecting breast cancer. The present invention provides a kit or a device for the detection of breast cancer, comprising nucleic acid(s) capable of specifically binding to a miRNA in a sample of a subject, and a method for detecting breast cancer, comprising measuring the miRNA in vitro.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Applicants: TORAY INDUSTRIES, INC., NATIONAL CANCER CENTER
    Inventors: Satoshi KONDOU, Hitoshi NOBUMASA, Satoko KOZONO, Hiroko SUDO, Junpei KAWAUCHI, Takahiro OCHIYA, Nobuyoshi KOSAKA, Makiko ONO, Kenji TAMURA
  • Publication number: 20130264895
    Abstract: The synchronous motor includes a rotor including a rotor core constituted of segment poles disposed in a ring and a stator including a stator core disposed radially outward or inward of the rotor with a gap therebetween and a multiple-phase stator winding wound on the stator core. Each of the segment poles has a magnetic salient pole characteristic. The rotor is rotated in synchronization with a rotating magnetic field generated when the multiple-phase stator winding is applied with a multiple-phase AC voltage. The lamination thickness as an axial length of the stator core is shorter than the lamination thickness as an axial length of the rotor core.
    Type: Application
    Filed: January 9, 2013
    Publication date: October 10, 2013
    Applicant: DENSO CORPORATION
    Inventors: Kenji KONDOU, Shin Kusase, Takeo Maekawa
  • Patent number: 8043882
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 25, 2011
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7973373
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single -crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: July 5, 2011
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7634166
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: December 15, 2009
    Assignee: Japan Aviation Electronics Ind. Ltd.
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Patent number: 7582497
    Abstract: A micro-optic device including a complicate structure and a movable mirror is made to be manufactured in a reduced length of time. A silicon substrate and a single crystal silicon device layer with an intermediate layer of silicon dioxide interposed therebetween defines a substrate on which a layer of mask material is formed and is patterned to form a mask having the same pattern as the configuration of the intended optical device as viewed in plan view. A surface which is to be constricted as a mirror surface is chosen to be in a plane of the silicon crystal. Using the mask, the device layer is vertically etched by a reactive ion dry etching until the intermediate layer is exposed. Subsequently, using KOH solution, a wet etching which is anisotropic to the crystallographic orientation is performed with an etching rate which is on the order of 0.1 ?m/min for a time interval on the order of ten minutes is performed to convert the sidewall surface of the mirror into a smooth crystallographic surface.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: September 1, 2009
    Assignee: Japan Aviation Electroncis Industry Limited
    Inventors: Yoshichika Kato, Satoshi Yoshida, Keiichi Mori, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7580606
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: August 25, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Publication number: 20090181487
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Application
    Filed: December 5, 2008
    Publication date: July 16, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Publication number: 20090146228
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 11, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7515783
    Abstract: A micro-optic device including a complicate structure and a movable mirror is made to be manufactured in a reduced length of time. A silicon substrate and a single crystal silicon device layer with an intermediate layer of silicon dioxide interposed therebetween defines a substrate on which a layer of mask material is formed and is patterned to form a mask having the same pattern as the configuration of the intended optical device as viewed in plan view. A surface which is to be constructed as a mirror surface is chosen to be in a plane of the silicon crystal. Using the mask, the device layer is vertically etched by a reactive ion dry etching until the intermediate layer is exposed. Subsequently, using KOH solution, a wet etching which is anisotropic to the crystallographic orientation is performed with an etching rate which is on the order of 0.1 ?m/min for a time interval on the order of ten minutes is performed to convert the sidewall surface of the mirror into a smooth crystallographic surface.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: April 7, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Satoshi Yoshida, Keiichi Mori, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7505658
    Abstract: An optical fiber device comprising a positioning/fixing substrate has a fiber guide and an optical fiber pressing spring formed in the fiber guide, and an optical fiber stored in the fiber guide. The optical fiber includes an end part having at least one marker groove. The fiber guide is a groove having two side wall surfaces. The optical fiber pressing spring includes a plate spring formed on one of the side wall surfaces in the fiber guide and an edge formed on the plate spring. The plate spring presses the edge to the side of the optical fiber with a fulcrum on one of the side wall surfaces, and the end part of the optical fiber is positioned by aligning the marker groove of the optical fiber with the edge of the optical fiber pressing spring.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: March 17, 2009
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Patent number: 7476561
    Abstract: In a microminiature moving device that has disposed, on a single-crystal silicon substrate, movable elements (a movable rod 46, a movable comb electrode 49, etc.) displaceable in parallel to the substrate surface and stationary parts (a stationary part 40a, etc.), the stationary parts are fixedly secured to the single-crystal silicon substrate 61 with an insulating layer 62 sandwiched therebetween, and depressions 64 are formed in those surface regions of the single-crystal silicon substrate 61 where no stationary parts are present, and the movable parts are positioned above the depressions 64. The depressions 64 form gaps 50 large enough to prevent foreign bodies from causing troubles such as malfunction of the movable parts and shoring.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: January 13, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7476948
    Abstract: In a microminiature moving device that has disposed, on a single-crystal silicon substrate, movable elements (a movable rod 46, a movable comb electrode 49, etc.) displaceable in parallel to the substrate surface and stationary parts (a stationary part 40a, etc.), the stationary parts are fixedly secured to the single-crystal silicon substrate 61 with an insulating layer 62 sandwiched therebetween, and depressions 64 are formed in those surface regions of the single-crystal silicon substrate 61 where no stationary parts are present, and the movable parts are positioned above the depressions 64. The depressions 64 form gaps 50 large enough to prevent foreign bodies from causing troubles such as malfunction of the movable parts and shoring.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: January 13, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Publication number: 20090003774
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Application
    Filed: September 2, 2008
    Publication date: January 1, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Publication number: 20090003773
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Application
    Filed: September 2, 2008
    Publication date: January 1, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Publication number: 20090004765
    Abstract: A micro-optic device including a complicate structure and a movable mirror is made to be manufactured in a reduced length of time. A silicon substrate and a single crystal silicon device layer with an intermediate layer of silicon dioxide interposed therebetween defines a substrate on which a layer of mask material is formed and is patterned to form a mask having the same pattern as the configuration of the intended optical device as viewed in plan view. A surface which is to be constricted as a mirror surface is chosen to be in a plane of the silicon crystal. Using the mask, the device layer is vertically etched by a reactive ion dry etching until the intermediate layer is exposed. Subsequently, using KOH solution, a wet etching which is anisotropic to the crystallographic orientation is performed with an etching rate which is on the order of 0.1 ?m/min for a time interval on the order of ten minutes is performed to convert the sidewall surface of the mirror into a smooth crystallographic surface.
    Type: Application
    Filed: February 22, 2008
    Publication date: January 1, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Satoshi Yoshida, Keiichi Mori, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7468995
    Abstract: An optical switch, wherein the first and second output ports (optical fibers) are disposed on the opposite sides of the input port (optical fiber) so as to form acute angles with respect to the input port, the input port and the first output port are optically coupled to each other through a first mirror surface, and the input port and the second output port are optically coupled to each other through a second mirror surface. The incident angles of an incident light beam with respect to the mirror surfaces are equalized, and optical path lengths between the input port and the first and second output ports are equalized. The actuator inserts and withdraws the second mirror surface on a position at the front of the first mirror surface.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: December 23, 2008
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Yoshihiko Hamada, Keiichi Mori, Osamu Imaki, Kenji Kondou
  • Patent number: 7379635
    Abstract: The end parts of three optical waveguide parts are supported, mutually in parallel, on a substrate, the end part of the center optical waveguide part being one input port and the end parts of other two optical waveguide parts being a first and a second output port, the emitted light from the input port is switched, by means of a first moving mirror and a second moving mirror which are switchingly inserted into positions having the same distance from the end face of the input port, to either the first output port side or the second output port side, the light from the first moving mirror and the light from the second moving mirror being reflected respectively in a first fixed mirror or a second fixed mirror, the light being respectively coupled to the first or the second output port.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: May 27, 2008
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Keiichi Mori, Kenji Kondou, Osamu Imaki, Yoshihiko Hamada
  • Publication number: 20080089648
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 17, 2008
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Publication number: 20070253045
    Abstract: An optical switch, wherein the first and second output ports (optical fibers) are disposed on the opposite sides of the input port (optical fiber) so as to form acute angles with respect to the input port, the input port and the first output port are optically coupled to each other through a first mirror surface, and the input port and the second output port are optically coupled to each other through a second mirror surface. The incident angles of an incident light beam with respect to the mirror surfaces are equalized, and optical path lengths between the input port and the first and second output ports are equalized. The actuator inserts and withdraws the second mirror surface on a position at the front of the first mirror surface.
    Type: Application
    Filed: April 24, 2007
    Publication date: November 1, 2007
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Yoshihiko Hamada, Keiichi Mori, Osamu Imaki, Kenji Kondou