Patents by Inventor Kenji Kuranuki

Kenji Kuranuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230368983
    Abstract: A carbon paste for solid electrolytic capacitors contains first carbon particles in which an average particle size of primary particles is more than or equal to 40 nm and less than or equal to 100 nm. A proportion of the first carbon particles in a dried solid content is from 25 vol % to 75 vol %, inclusive.
    Type: Application
    Filed: October 25, 2021
    Publication date: November 16, 2023
    Inventors: MOMO KUSAKABE, YUKIHIRO SHIMASAKI, TAKASHI OHBAYASHI, JUNICHI KURITA, DAISUKE KUBO, KENJI KURANUKI
  • Patent number: 9005504
    Abstract: A method of manufacturing a resin molded electronic component using a first mold having a cavity with an open top surface and a second mold combined with the first mold on top includes the following steps: (A) inserting a element of the electronic component and a liquid resin precursor into the cavity of the first mold, the liquid resin precursor having viscosity of 10 Pa·s or lower at 40° C.; (B) arranging the second mold such that the element and the resin precursor are sandwiched after the step (A); and (C) pressing the element and the resin precursor between the first mold and the second mold, and curing the resin precursor by heat from the second mold after the step (B). A temperature of the second mold is set to be higher than that of the first mold.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: April 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Junichi Kurita, Hiroshi Takahashi, Kenji Kuranuki, Motoaki Morioka, Keizo Nakagawa, Masashi Minakuchi, Yukihiro Shimasaki
  • Patent number: 8411416
    Abstract: A surface mount electronic component includes an element, an anode terminal, a cathode terminal, and an outer package body. The element has a configuration including an anode, and a cathode formed on a part of the surface of the anode via a dielectric substance. An anode terminal is electrically connected to the anode, and a cathode terminal is electrically connected to the cathode. The outer package body covers an element laminated body such that a part of the anode terminal and a part of the cathode terminal are exposed. The outer package body is made of a norbornene resin. Thus, an electronic component having high reliability can be achieved.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: April 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Junichi Kurita, Kenji Kuranuki, Yuji Konda, Yukihiro Shimasaki
  • Publication number: 20120087062
    Abstract: A surface mount electronic component includes an element, an anode terminal, a cathode terminal, and an outer package body. The element has a configuration including an anode, and a cathode formed on a part of the surface of the anode via a dielectric substance. An anode terminal is electrically connected to the anode, and a cathode terminal is electrically connected to the cathode. The outer package body covers an element laminated body such that a part of the anode terminal and a part of the cathode terminal are exposed. The outer package body is made of a norbornene resin. Thus, an electronic component having high reliability can be achieved.
    Type: Application
    Filed: June 17, 2010
    Publication date: April 12, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Junichi Kurita, Kenji Kuranuki, Yuji Konda, Yukihiro Shimasaki
  • Patent number: 8064192
    Abstract: A capacitor element includes a positive electrode body made of valve metal, a dielectric oxide layer on the positive electrode body, a solid electrolytic layer made of conductive polymer on the dielectric oxide layer, and a negative electrode layer on the solid electrolytic layer. A solid electrolytic capacitor includes the capacitor element, a package made of insulating resin covering the capacitor element, a base electrode provided at an edge surface of the package and made of non-valve metal coupled with the positive electrode body, a diffusion layer for connecting the positive electrode body to the base electrode, an external electrode on the base electrode, and an external electrode connected to the negative electrode layer. The solid electrolytic capacitor reduces the number of components and processes to reduce its cost and to have a small size, and has a small equivalent series resistance and a small equivalent series inductance.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: November 22, 2011
    Assignee: Panasonic Corporation
    Inventors: Kenji Kuranuki, Katsuyuki Nakamura, Mikio Kobashi
  • Publication number: 20110127694
    Abstract: A method of manufacturing a resin molded electronic component using a first mold having a cavity with an open top surface and a second mold combined with the first mold on top includes the following steps: (A) inserting a element of the electronic component and a liquid resin precursor into the cavity of the first mold, the liquid resin precursor having viscosity of 10 Pa·s or lower at 40° C.; (B) arranging the second mold such that the element and the resin precursor are sandwiched after the step (A); and (C) pressing the element and the resin precursor between the first mold and the second mold, and curing the resin precursor by heat from the second mold after the step (B). A temperature of the second mold is set to be higher than that of the first mold.
    Type: Application
    Filed: June 17, 2010
    Publication date: June 2, 2011
    Inventors: Junichi Kurita, Hiroshi Takahashi, Kenji Kuranuki, Motoaki Morioka, Keizo Nakagawa, Masashi Minakuchi, Yukihiro Shimasaki
  • Patent number: 7800462
    Abstract: A printed board is mounted with a chip-type solid electrolytic capacitor of a four-terminal structure where a pair of positive electrode terminals are disposed at opposite positions and a pair of negative electrode terminals are disposed at opposite positions on a mounting surface. The printed board has a pair of positive electrode patterns and a pair of negative electrode patterns to which the positive electrode terminals and negative electrode terminals of the chip-type solid electrolytic capacitor are connected, respectively. The printed board further has an inductor section that is insulated from the negative electrode patterns, and electrically connects the positive electrode patterns.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: September 21, 2010
    Assignee: Panasonic Corporation
    Inventors: Junichi Kurita, Kenji Kuranuki, Youichi Aoshima, Hiroshi Higashitani, Tsuyoshi Yoshino
  • Patent number: 7787234
    Abstract: A digital signal processor includes a component for processing a digital signal, a power line for supplying a power to the component, and a decoupling capacitor connected between the power line and a ground. The decoupling capacitor has an equivalent series resistance larger than zero and not larger than 25 m? at 100 kHz and an equivalent series inductance larger than zero and not larger than 800 pH at 500 MHz. This digital signal processor does not generate a lot of digital noise, and has a small, thin size.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: August 31, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Serikawa, Kenji Kuranuki, Junichi Kurita, Tsuyoshi Yoshino, Katsuyuki Nakamura, Hiroshi Fujii
  • Publication number: 20100165547
    Abstract: A capacitor element includes a positive electrode body made of valve metal, a dielectric oxide layer on the positive electrode body, a solid electrolytic layer made of conductive polymer on the dielectric oxide layer, and a negative electrode layer on the solid electrolytic layer. A solid electrolytic capacitor includes the capacitor element, a package made of insulating resin covering the capacitor element, a base electrode provided at an edge surface of the package and made of non-valve metal coupled with the positive electrode body, a diffusion layer for connecting the positive electrode body to the base electrode, an external electrode on the base electrode, and an external electrode connected to the negative electrode layer. The solid electrolytic capacitor reduces the number of components and processes to reduce its cost and to have a small size, and has a small equivalent series resistance and a small equivalent series inductance.
    Type: Application
    Filed: August 28, 2008
    Publication date: July 1, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Kenji Kuranuki, Katsuyuki Nakamura, Mikio Kobashi
  • Patent number: 7612987
    Abstract: A chip-type filter has a laminated body formed by stacking a plurality of capacitor elements, a pair of positive electrode terminals, a pair of negative electrode terminals, insulating outer resin, and an inductor section. The laminated body includes capacitor elements in a first group and capacitor elements in a second group, the positive electrode sections in both groups are disposed on the opposite sides with respect to the negative electrode sections. Positive electrode terminals are electrically connected to the positive electrode sections of capacitor elements in the first group and those of capacitor elements in the second group, respectively. Negative electrode terminals are electrically connected to the negative electrode sections in the laminated body, and are disposed at both ends of the direction crossing the connecting direction between the positive electrode terminals. The inductor section is insulated from the negative electrode sections and couples the positive electrode terminals.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 3, 2009
    Assignee: Panasonic Corporation
    Inventors: Junichi Kurita, Kenji Kuranuki, Youichi Aoshima, Hiroshi Higashitani, Tsuyoshi Yoshino
  • Publication number: 20090174502
    Abstract: A printed board is mounted with a chip-type solid electrolytic capacitor of a four-terminal structure where a pair of positive electrode terminals are disposed at opposite positions and a pair of negative electrode terminals are disposed at opposite positions on a mounting surface. The printed board has a pair of positive electrode patterns and a pair of negative electrode patterns to which the positive electrode terminals and negative electrode terminals of the chip-type solid electrolytic capacitor are connected, respectively. The printed board further has an inductor section that is insulated from the negative electrode patterns, and electrically connects the positive electrode patterns.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 9, 2009
    Inventors: Junichi KURITA, Kenji KURANUKI, Youichi AOSHIMA, Hiroshi HIGASHITANI, Tsuyoshi YOSHINO
  • Publication number: 20090160579
    Abstract: A digital signal processor includes a component for processing a digital signal, a power line for supplying a power to the component, and a decoupling capacitor connected between the power line and a ground. The decoupling capacitor has an equivalent series resistance larger than zero and not larger than 25 m? at 100 kHz and an equivalent series inductance larger than zero and not larger than 800 pH at 500 MHz. This digital signal processor does not generate a lot of digital noise, and has a small, thin size.
    Type: Application
    Filed: May 15, 2006
    Publication date: June 25, 2009
    Inventors: Hiroshi Serikawa, Kenji Kuranuki, Junichi Kurita, Tsuyoshi Yoshino, Katsuyuki Nakamura, Hiroshi Fujii
  • Publication number: 20090154067
    Abstract: A chip-type filter has a laminated body formed by stacking a plurality of capacitor elements, a pair of positive electrode terminals, a pair of negative electrode terminals, insulating outer resin, and an inductor section. The laminated body includes capacitor elements in a first group and capacitor elements in a second group, the positive electrode sections in both groups are disposed on the opposite sides with respect to the negative electrode sections. Positive electrode terminals are electrically connected to the positive electrode sections of capacitor elements in the first group and those of capacitor elements in the second group, respectively. Negative electrode terminals are electrically connected to the negative electrode sections in the laminated body, and are disposed at both ends of the direction crossing the connecting direction between the positive electrode terminals. The inductor section is insulated from the negative electrode sections and couples the positive electrode terminals.
    Type: Application
    Filed: February 10, 2009
    Publication date: June 18, 2009
    Inventors: Junichi Kurita, Kenji Kuranuki, Youichi Aoshima, Hiroshi Higashitani, Tsuyoshi Yoshino
  • Patent number: 7365961
    Abstract: A solid electrolytic capacitor includes a planar solid electrolytic capacitor element having anode and cathode portions; anode and cathode terminals; and insulating coating resin. The anode terminal is electrically connected at the top surface thereof to the anode portion. The cathode terminal is electrically connected at the top surface side thereof to the cathode portion. The coating resin integrally coats the capacitor element so as to expose the bottom surfaces of the anode and cathode terminals. The anode and cathode terminals are disposed as close to each other as not more than 3 mm. The anode and cathode terminals have stair steps on both sides thereof and are connected to the anode and cathode portions at joint faces, respectively. The anode joint faces and the cathode joint faces are coated with coating resin. The solid electrolytic capacitor is provided with the anode joint faces and/or the cathode joint faces.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: April 29, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Junichi Kurita, Tsuyoshi Yoshino, Hirotoshi Toji, Kazuo Kawahito, Takashi Iwakiri, Hiroshi Serikawa, Kenji Kuranuki
  • Patent number: 7359180
    Abstract: A solid electrolytic capacitor includes a flat-shaped anode terminal having a first surface connected to an anode portion of a capacitor element and having a second surface opposite to the first surface, a flat-shaped cathode terminal having a first surface connected to a cathode layer of the capacitor element and having a second surface opposite to the first surface thereof, and an insulating resin package accommodating the capacitor element, the anode terminal, and the cathode terminal. The second surface of the cathode terminal is flush with the second surface of the anode terminal. The second surface of the anode terminal and the second surface of the cathode terminal expose to an outside of the resin package. The anode terminal includes a first thick portion and a first thin portion thinner than the first thick portion. The first thick portion has the second surface of the anode terminal and a portion of the first surface of the anode terminal.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: April 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Junichi Kurita, Kazuo Tadanobu, Kenji Kuranuki, Yuji Midou, Tsuyoshi Yoshino, Tatsuo Fujii, Hiroshi Serikawa
  • Publication number: 20080002335
    Abstract: A solid electrolytic capacitor includes a planar solid electrolytic capacitor element having anode and cathode portions; anode and cathode terminals; and insulating coating resin. The anode terminal is electrically connected at the top surface thereof to the anode portion. The cathode terminal is electrically connected at the top surface side thereof to the cathode portion. The coating resin integrally coats the capacitor element so as to expose the bottom surfaces of the anode and cathode terminals. The anode and cathode terminals are disposed as close to each other as not more than 3 mm. The anode and cathode terminals have stair steps on both sides thereof and are connected to the anode and cathode portions at joint faces, respectively. The anode joint faces and the cathode joint faces are coated with coating resin. The solid electrolytic capacitor is provided with the anode joint faces and/or the cathode joint faces.
    Type: Application
    Filed: October 11, 2005
    Publication date: January 3, 2008
    Inventors: Junichi Kurita, Tsuyoshi Yoshino, Hirotoshi Toji, Kazuo Kawahito, Takashi Iwakiri, Hiroshi Serikawa, Kenji Kuranuki
  • Patent number: 6719813
    Abstract: A solid electrolytic capacitor having (A) a capacitor element including an oxide layer 1 formed on a part of an outer surface of a valve metal anode body, a solid electrolyte layer 2 formed on the oxide layer layer, and a cathode conductor layer 3 formed on the solid electrolyte layer, and an anode lead out area on a remaining part of the anode body, (B) lead terminals connected to the cathode and the anode lead out area of the capacitor element, and (C) a packaging resin encapsulating the capacitor element with parts of the lead terminals exposed outside. The solid electrolytic capacitor has a first separation strip 6 and a second separation strip 7 formed on a part of the roughened surface layer and also has insulating material 8 on the respective surfaces of the first and the second separation strips.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: April 13, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshikuni Kojima, Kenji Kuranuki, Kazuo Tadanobu, Takuhisa Sugimoto, Yasuhiro Kobatake
  • Publication number: 20030007311
    Abstract: A solid electrolytic capacitor comprising: (A) a capacitor element comprising: an oxide layer 1 formed on a part of an outer surface of a valve metal anode body, a solid electrolyte layer 2 formed on the oxide layer layer, and a cathode conductor layer 3 formed on the solid electrolyte layer, and an anode lead out area on a remaining part of the anode body, (B) lead terminals connected to the cathode and the anode lead out area of the capacitor element, and (C) a packaging resin encapsulating the capacitor element with parts of the lead terminals exposed outside. The solid electrolytic capacitor of the present invention has a first separation strip 6 and a second separation strip 7 formed on a part of the roughened surface layer and also has insulating material 8 on the respective surfaces of the first and the second separation strips.
    Type: Application
    Filed: June 18, 2002
    Publication date: January 9, 2003
    Applicant: Matsushita Electric Industrial Co.
    Inventors: Toshikuni Kojima, Kenji Kuranuki, Kazuo Tadanobu, Takuhisa Sugimoto, Yasuhiro Kobatake
  • Patent number: 6409775
    Abstract: A hoop metal lead frame (1) having, solid electrolytic capacitor elements (5) on its terminal sections (2) is provided with a crosspiece (3) bridging both sides in terms of the width direction disposed along the length direction in a region between the capacitor elements (5), one crosspiece for two capacitor elements (5). The metal lead frame (1) is placed on a molding die so that the region without having the crosspiece is locating at the sub runner (8), which has branched out from the main runner (7). The capacitor elements (5) are encapsulated with a molding resin injected through the sub runner (8). Since the molding resin is not covering the crosspiece (3), the main runner portion (7) and the sub runner portion (8) can be severed from the metal lead frame (1) without effecting unwanted stress on the solid electrolytic capacitors (10). The solid electrolytic capacitors (10) thus manufactured have a superior property in the tight hermetic sealing.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: June 25, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masatoshi Tasei, Kenji Kuranuki
  • Patent number: D569799
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: May 27, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuo Kawahito, Kenji Kuranuki, Junichi Kurita, Takashi Iwakiri