Patents by Inventor Kenji Mimura

Kenji Mimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11322322
    Abstract: An insulating molded body to be used for an arc extinguishing device of a gas circuit breaker is provided. The insulating molded body includes a fluororesin mixture which contains a fluororesin and an oxygen generator configured to generate oxygen through thermal decomposition at 450° C. or more and 1,150° C. or less with an arc generated when a conduction current is interrupted. The oxygen generator is dispersed in the fluororesin. Also provided is a gas circuit breaker including an insulating nozzle formed of the insulating molded body.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 3, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shuichi Hiza, Takashi Kawana, Fumihiko Hosokoshi, Motohiro Sato, Kenji Mimura
  • Publication number: 20200357587
    Abstract: An insulating molded body to be used for an arc extinguishing device of a gas circuit breaker is provided. The insulating molded body includes a fluororesin mixture which contains a fluororesin and an oxygen generator configured to generate oxygen through thermal decomposition at 450° C. or more and 1,150° C. or less with an arc generated when a conduction current is interrupted. The oxygen generator is dispersed in the fluororesin. Also provided is a gas circuit breaker including an insulating nozzle formed of the insulating molded body.
    Type: Application
    Filed: October 30, 2018
    Publication date: November 12, 2020
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shuichi HIZA, Takashi KAWANA, Fumihiko HOSOKOSHI, Motohiro SATO, Kenji MIMURA
  • Patent number: 10351728
    Abstract: A thermosetting resin composition containing a thermosetting resin and an inorganic filler, in which the inorganic filler contains secondary sintered particles (A) formed of primary particles of boron nitride, which have an aspect ratio of 10 to 20, and secondary sintered particles (B) formed of the primary particles of boron nitride, which have an aspect ratio of 2 to 9. The thermosetting resin composition can produce a thermal conductive sheet that has excellent filling property of the inorganic filler, and excellent thermal conductivity, adhesiveness and electrical insulating properties.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: July 16, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Mariko Takahara, Kenji Mimura, Yurie Nakamura, Motoki Masaki
  • Patent number: 10177068
    Abstract: A method for manufacturing, by a transfer mold method, a power module equipped with a heat conductive insulating sheet in which an inorganic filler including secondary aggregated particles formed by aggregation of primary particles of scaly boron nitride is dispersed in a thermosetting resin, where curing of an uncured or semi-cured heat conductive insulating sheet during transfer molding is advanced under specific conditions. The method for manufacturing a power module equipped with a heat conductive insulating sheet has excellent thermal conductivity and electric insulation ability.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: January 8, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenji Mimura, Yurie Nakamura, Xiaohong Yin, Kazuhiro Tada
  • Publication number: 20160115343
    Abstract: A thermosetting resin composition containing a thermosetting resin and an inorganic filler, in which the inorganic filler contains secondary sintered particles (A) formed of primary particles of boron nitride, which have an aspect ratio of 10 to 20, and secondary sintered particles (B) formed of the primary particles of boron nitride, which have an aspect ratio of 2 to 9. The thermosetting resin composition can produce a thermal conductive sheet that has excellent filling property of the inorganic filler, and excellent thermal conductivity, adhesiveness and electrical insulating properties.
    Type: Application
    Filed: January 10, 2014
    Publication date: April 28, 2016
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Mariko TAKAHARA, Kenji MIMURA, Yurie NAKAMURA, Motoki MASAKI
  • Publication number: 20160013116
    Abstract: A method for manufacturing, by a transfer mold method, a power module equipped with a heat conductive insulating sheet in which an inorganic filler including secondary aggregated particles formed by aggregation of primary particles of scaly boron nitride is dispersed in a thermosetting resin, where curing of an uncured or semi-cured heat conductive insulating sheet during transfer molding is advanced under specific conditions. The method for manufacturing a power module equipped with a heat conductive insulating sheet has excellent thermal conductivity and electric insulation ability.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 14, 2016
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenji MIMURA, Yurie NAKAMURA, Xiaohong YIN, Kazuhiro TADA
  • Patent number: 9029438
    Abstract: Provided is a thermosetting resin composition including an inorganic filler and a thermosetting resin matrix component, in which the inorganic filler includes secondary sintered particles each formed of primary particles of scaly boron nitride, and at least some of the secondary sintered particles each have a maximum cavity diameter of 5 ?m to 80 ?m. The thermosetting resin composition can be used for providing a heat conductive sheet in which electrical insulation property is kept by controlling where the defects such as voids and cracks occur and their size, and which has excellent heat conductivity.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 12, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kei Yamamoto, Takashi Nishimura, Kenji Mimura, Motoki Masaki, Seiki Hiramatsu, Xiaohong Yin
  • Publication number: 20130012621
    Abstract: Provided is a thermosetting resin composition including an inorganic filler and a thermosetting resin matrix component, in which the inorganic filler includes secondary sintered particles each formed of primary particles of scaly boron nitride, and at least some of the secondary sintered particles each have a maximum cavity diameter of 5 ?m to 80 ?m. The thermosetting resin composition can be used for providing a heat conductive sheet in which electrical insulation property is kept by controlling where the defects such as voids and cracks occur and their size, and which has excellent heat conductivity.
    Type: Application
    Filed: December 28, 2010
    Publication date: January 10, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kei Yamamoto, Takashi Nishimura, Kenji Mimura, Motoki Masaki, Seiki Hiramatsu, Xiaohong Yin
  • Patent number: 8236666
    Abstract: Provided is a semiconductor device including: a base plate; a thermally conductive resin layer formed on an upper surface of the base plate; an integrated layer which is formed on an upper surface of the thermally conductive resin layer, and includes an electrode and an insulating resin layer covering all side surfaces of the electrode; and a semiconductor element formed on an upper surface of the electrode, in which the integrated layer is thermocompression bonded to the base plate through the thermally conductive resin layer. This semiconductor device excels in insulating properties and reliability.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Seiki Hiramatsu, Kei Yamamoto, Atsuko Fujino, Takashi Nishimura, Kenji Mimura, Hideki Takigawa, Hiroki Shiota, Nobutake Taniguchi, Hiroshi Yoshida
  • Patent number: 8193633
    Abstract: Provided is a heat conductive sheet obtained by dispersing an inorganic filler in a thermosetting resin, in which the inorganic filler contains secondary aggregation particles formed by isotropically aggregating scaly boron nitride primary particles having an average length of 15 ?m or less, and the inorganic filler contains more than 20 vol % of the secondary aggregation particles each having a particle diameter of 50 ?m or more. The heat conductive sheet is advantageous in terms of productivity and cost and excellent in heat conductivity and electrical insulating properties.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: June 5, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Mimura, Hideki Takigawa, Hiroki Shiota, Kazuhiro Tada, Takashi Nishimura, Hiromi Ito, Seiki Hiramatsu, Atsuko Fujino, Kei Yamamoto, Motoki Masaki
  • Publication number: 20100226095
    Abstract: Provided is a heat conductive sheet obtained by dispersing an inorganic filler in a thermosetting resin, in which the inorganic filler contains secondary aggregation particles formed by isotropically aggregating scaly boron nitride primary particles having an average length of 15 ?m or less, and the inorganic filler contains more than 20 vol % of the secondary aggregation particles each having a particle diameter of 50 ?m or more. The heat conductive sheet is advantageous in terms of productivity and cost and excellent in heat conductivity and electrical insulating properties.
    Type: Application
    Filed: September 12, 2008
    Publication date: September 9, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenji Mimura, Hideki Takigawa, Hiroki Shiota, Kazuhiro Tada, Takashi Nishimura, Hiromi Ito, Seiki Hiramatsu, Atsuko Fujino, Kei Yamamoto, Motoki Masaki
  • Publication number: 20100201002
    Abstract: Provided is a semiconductor device including: a base plate; a thermally conductive resin layer formed on an upper surface of the base plate; an integrated layer which is formed on an upper surface of the thermally conductive resin layer, and includes an electrode and an insulating resin layer covering all side surfaces of the electrode; and a semiconductor element formed on an upper surface of the electrode, in which the integrated layer is thermocompression bonded to the base plate through the thermally conductive resin layer. This semiconductor device excels in insulating properties and reliability.
    Type: Application
    Filed: December 5, 2007
    Publication date: August 12, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Seiki Hiramatsu, Kei Yamamoto, Atsuko Fujino, Takashi Nishimura, Kenji Mimura, Hideki Takigawa, Hiroki Shiota, Nobutake Taniguchi, Hiroshi Yoshida
  • Patent number: 7204778
    Abstract: A differential gear arbitrarily produces difference in speed of rotation between output side rotary members. When a difference in speed of rotation occurs between drive shafts 3 and 4, if clutches 12 and 17 are disconnected, the drive shaft 3 rotates independently of the first output side gear 9, and the drive shaft 4 rotates independently of the second output side gear 14. When the rotation of the drive shaft 3 with respect to the first output side gear 9 is controlled by the first clutch 12, by setting appropriately the gear ratios between (1) the first input side gear 8, (2) the first output side gear 9 and (3) the first intermediate gears 10, the drive shaft 3 rotates faster than the drive shaft 4.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: April 17, 2007
    Inventor: Kenji Mimura
  • Patent number: 6484858
    Abstract: The present invention relates to a friction clutch having a pair of clutch members opposite to each other in a radial direction with a plurality of rollers held between them, an angle of a turning axis of each roller relative to the rotation axis of a clutch member is made more than 10° and less than 20°, and in the meantime, the angle of the turning axis of each roller relative to the plane including the rotation axis of the clutch member is made more than 25° and less than 90°, so that a stable frictional force may be generated at all times. In this case, when a load in an axial direction is added to the clutch member, each roller generates sliding friction while turning, and therefore, a wear is extremely smaller than that of a structure of bringing the respective fellow clutch plates into surface contact with each other like a multiple disk clutch.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: November 26, 2002
    Inventor: Kenji Mimura
  • Patent number: 6487444
    Abstract: The present inventions relates to a design evaluation method, equipment thereof, and a goods design method that make it possible to obtain a highly reliable evaluation of a design quality of an evaluated object. Thus, in the present invention, the design of an evaluated object is evaluated on the basis of a brain wave reaction by outputting an image, which expresses the design of the evaluated object, by image output means, and measuring brain waves of an arbitrary test subject by showing this image to the test subject. Hence, it is possible to obtain a highly reliable evaluation result without any subjective judgment based on the knowledge and experience of the test subject.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: November 26, 2002
    Inventor: Kenji Mimura
  • Patent number: 6458054
    Abstract: The present invention provides a transmission capable of surely transmitting power even in a configuration in which the diameter of a rotating body is changed. When movable members of the rotating body are moved in the radial direction, the diameter of a winding member that is wound around the movable members increases or decreases, so that the speed reducing ratio with respect to the other rotating body changes. In this case, the circumferential length of the winding member that is wound around the movable members is changed by causing the other end side of the winding member to go in or out through between the movable members. At this time, since the circumferential length of the winding member changes stepwise by the predetermined number of the engagement portions of the winding member, the engagement portions of the transmitting member can always be engaged surely with the engagement portions of the winding member even if the speed is changed.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: October 1, 2002
    Inventor: Kenji Mimura
  • Publication number: 20020042314
    Abstract: The present invention provides a transmission capable of surely transmitting power even in a configuration in which the diameter of a rotating body is changed. When movable members of the rotating body are moved in the radial direction, the diameter of a winding member that is wound around the movable members increases or decreases, so that the speed reducing ratio with respect to the other rotating body changes. In this case, the circumferential length of the winding member that is wound around the movable members is changed by causing the other end side of the winding member to go in or out through between the movable members. At this time, since the circumferential length of the winding member changes stepwise by the predetermined number of the engagement portions of the winding member, the engagement portions of the transmitting member can always be engaged surely with the engagement portions of the winding member even if the speed is changed.
    Type: Application
    Filed: September 14, 1999
    Publication date: April 11, 2002
    Applicant: LOWE HAUPTMAN GILMAN & BERNER, LLP
    Inventor: KENJI MIMURA
  • Patent number: 6367207
    Abstract: The present invention relates to a friction resistance generator capable of always generating a stable frictional force even if the opposed surfaces of a rotary member and a passive member have a curved shape such as a circumferential surface or a spherical surface. In the present invention, when the rotary member is rotated in the predetermined direction while a load is applied to the passive member, the rollers supported rotatably on one of the rotary member and the passive member rotate while being in contact with the rotary member or the passive member, thereby generating a frictional force according to the load on the rollers. In this case, the rollers are installed rotatably on either one of the opposed surfaces of the rotary member and the passive member, and the rollers are arranged so as to be capable of coming into contact with the other of the opposed surfaces of the rotary member and the passive member.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: April 9, 2002
    Assignee: Gaea Tech Corporation
    Inventors: Ippei Yamaji, Kenji Mimura
  • Patent number: 6342547
    Abstract: There is provided an epoxy resin composition, which has superior resistant property to SF6 gas, mechanical strength and cracking resistance in a well balanced manner and which can provide an insulating molded article having a low dielectric constant. The epoxy resin composition for an SF6-gas insulating device of the present invention is obtained by adding a silicate compound powder to an epoxy resin.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: January 29, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Mimura, Hiromi Ito, Hiroyuki Nishimura, Kazuharu Kato, Hirofumi Fujioka, Yukio Ozaki, Hiroyuki Hama
  • Publication number: 20010029341
    Abstract: The present inventions relates to a design evaluation method, equipment thereof, and a goods design method that make it possible to obtain a highly reliable evaluation of a design quality of an evaluated object. Thus, in the present invention, the design of an evaluated object is evaluated on the basis of a brain wave reaction by outputting an image, which expresses the design of the evaluated object, by image output means, and measuring brain waves of an arbitrary test subject by showing this image to the test subject. Hence, it is possible to obtain a highly reliable evaluation result without any subjective judgment based on the knowledge and experience of the test subject.
    Type: Application
    Filed: February 26, 2001
    Publication date: October 11, 2001
    Inventor: Kenji Mimura