Patents by Inventor Kenji Oota

Kenji Oota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6995464
    Abstract: A gate electrode (1a) is formed on the outer peripheral step portion (1?) of a semiconductor substrate (1) so as to face a pressure-contact supporting block (6), and a convex contacting portion (1g) is formed on a predetermined position on the surface of the gate electrode to contact the pressure contact supporting block. The surface area of the gate electrode ranging from the inner periphery to a position adjacent to the convex contacting portion, is coated with an insulation film (1d). The convex contacting portion (1g) is formed of a convex portion integral with the gate electrode or formed of another gate electrode (1a?).
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: February 7, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Oota, Futoshi Tokunoh
  • Publication number: 20050214559
    Abstract: An in-mold coating molded article is obtained by coating the surface of a resin molded product comprising a hydroxyl group-containing polypropylene resin composition (A) with a paint composition for in-mold coating, wherein the composition (A) comprises a polypropylene resin (i), an additive rubber (ii) and optionally a polymer compound (iii) other than the polypropylene resin (i) and the additive rubber (ii), the total hydroxyl value of the polypropylene resin (i), the additive rubber (ii) and the optional polymer compound (iii) is from 1 to 40, the composition (A) has a rubber component content (total of the amount of the additive rubber (ii) and the amount of components soluble in n-decane at 23° C.
    Type: Application
    Filed: August 21, 2003
    Publication date: September 29, 2005
    Inventors: Takeshi Minoda, Yuichi Matsuda, Kaoru Yorita, Kenji Yonemochi, Kenji Oota, Etsuo Okahara, Toshio Arai
  • Patent number: 6943382
    Abstract: A P++-type first diffusion layer is formed by diffusing P-type impurities on a front side of an N?-type semiconductor substrate, and an N-type fourth diffusion layer which is shallower than the first diffusion layer is formed by diffusing N-type impurities on the front side, and a P-type second diffusion layer is locally formed in a ring-shape so as to be exposed on the lateral side by diffusing P-type impurities on the back side, and P-type impurities are diffused on the back side of the substrate and a P+-type third diffusion layer is locally formed so as to be distributed inward from the second diffusion layer and not to be exposed to the lateral side, and the P-type second diffusion layer and the P+-type third diffusion layer are formed in the two-stage structure, thereby various characteristics can be improved.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: September 13, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshihiro Yamaguchi, Kenji Oota
  • Patent number: 6864515
    Abstract: Each of outermost segments (OMSG) and innermost segments (IMSG) is utilized as a dummy segment. A top surface of a protruding portion (OMPP, IMPP) of each of the outermost segments (OMSG) and the innermost segments (IMSG) is covered with an insulating layer (1S+1P), and a clearance (CL) is provided between a top surface of the insulating layer (1S+1P) and a bottom surface (2BS) of a cathode strain relief plate. Each of all the other segments (SG) than the outermost and innermost segments has a protruding portion PP on which a cathode electrode (1K-AL) is formed. A thickness (T1) of the cathode electrode (1K-AL) is determined so as to allow a top surface of the cathode electrode (1K-AL) to be in contact with the bottom surface (2BS) of the cathode strain relief plate.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: March 8, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Nobuhisa Nakashima, Teruya Fukaura, Kenji Oota
  • Publication number: 20050012241
    Abstract: A process producing an in-mold coated molded product. The process molds a thermoplastic resin material under a mold-clamping pressure in a mold including a fixed mold part and a movable mold part each heated at a predetermined temperature, separates the fixed mold part and the movable mold part when the molded material surface is solidified such that it is durable to a pressure of injection and flow of a coating agent, and injects the coating agent containing a thermosetting resin material between an inner surface of the mold and the molded product obtained. The process also coats the molded product surface with the coating agent as the mold is re-clamped after injecting the coating agent, takes out the molded product coated with the coating agent when the coating agent is cured such that it is neither peeled off nor cracked by opening the mold, and re-heats the molded product after taking it out.
    Type: Application
    Filed: November 6, 2002
    Publication date: January 20, 2005
    Inventors: Kenji Oota, Kenji Yonemochi, Toshio Arai, Etuo Okahara, Kazuaki Kobayashi, Takashi Okusako
  • Publication number: 20040183092
    Abstract: A P++-type first diffusion layer is formed by diffusing P-type impurities on a front side of an N -type semiconductor substrate, and an N-type fourth diffusion layer which is shallower than the first diffusion layer is formed by diffusing N-type impurities on the front side, and a P-type second diffusion layer is locally formed in a ring-shape so as to be exposed on the lateral side by diffusing P-type impurities on the back side, and P-type impurities are diffused on the back side of the substrate and a P+-type third diffusion layer is locally formed so as to be distributed inward from the second diffusion layer and not to be exposed to the lateral side, and the P-type second diffusion layer and the P+-type third diffusion layer are formed in the two-stage structure, thereby various characteristics can be improved.
    Type: Application
    Filed: August 27, 2003
    Publication date: September 23, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Yoshihiro Yamaguchi, Kenji Oota
  • Publication number: 20040183093
    Abstract: A gate electrode (1a) is formed on the outer peripheral step portion (1′) of a semiconductor substrate (1) so as to face a pressure-contact supporting block (6), and a convex contacting portion (1g) is formed on a predetermined position on the surface of the gate electrode to contact the pressure contact supporting block. The surface area of the gate electrode ranging from the inner periphery to a position adjacent to the convex contacting portion, is coated with an insulation film (1d). The convex contacting portion (1g) is formed of a convex portion integral with the gate electrode or formed of another gate electrode (1a′).
    Type: Application
    Filed: January 28, 2004
    Publication date: September 23, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Kenji Oota, Futoshi Tokunoh
  • Publication number: 20040164316
    Abstract: Each of outermost segments (OMSG) and innermost segments (IMSG) is utilized as a dummy segment. A top surface of a protruding portion (OMPP, IMPP) of each of the outermost segments (OMSG) and the innermost segments (IMSG) is covered with an insulating layer (1S+1P), and a clearance (CL) is provided between a top surface of the insulating layer (1S+1P) and a bottom surface (2BS) of a cathode strain relief plate. Each of all the other segments (SG) than the outermost and innermost segments has a protruding portion PP on which a cathode electrode (1K−AL) is formed. A thickness (T1) of the cathode electrode (1K−AL) is determined so as to allow a top surface of the cathode electrode (1K−AL) to be in contact with the bottom surface (2BS) of the cathode strain relief plate.
    Type: Application
    Filed: July 14, 2003
    Publication date: August 26, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Nobuhisa Nakashima, Teruya Fukaura, Kenji Oota
  • Publication number: 20040112310
    Abstract: An intake-air control system for an engine enabling an intake-air quantity and a compression ratio to be variably controlled, includes sensors detecting engine operating conditions and the compression ratio, and a control unit electronically connected to the sensors for feedback-controlling the intake-air quantity based on the compression ratio as well as the engine operating conditions, while feedback-controlling the compression ratio based on the engine operating conditions. The control unit executes phase-matching between an intake-air quantity change occurring based on intake-air quantity control and a compression ratio change occurring based on compression ratio control, considering a relatively slower response in the compression ratio change than a response in the intake-air quantity change.
    Type: Application
    Filed: November 19, 2003
    Publication date: June 17, 2004
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kensuke Osamura, Hiroshi Iwano, Kenji Oota
  • Patent number: 6705303
    Abstract: In air-fuel ratio control apparatus and method for an internal combustion engine having an EGR valve interposed in an EGR passage between an intake manifold and an exhaust manifold, a target EGR quantity is calculated, a determination is made which of air-fuel ratio feedback controls through an EGR control and through an intake-air quantity is to be executed according to the target EGR quantity, and one of the air-fuel ratio feedback controls is selectively made according to a result of a determination of which of the air-fuel feedback controls is to be executed. During an execution of a rich spike control, the feedback control through the intake-air quantity control is unconditionally executed.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 16, 2004
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroyuki Itoyama, Hiroshi Iwano, Kensuke Osamura, Kenji Oota
  • Patent number: 6701244
    Abstract: A basic target excess air factor tLAMBDA0 and a target fresh air intake amount tQac are set base upon the operation condition of an engine (30). A target excess air factor tLAMBDA is calculated by multiplying the ratio of a real fresh air intake amount rQac as detected by a sensor (16) and the target fresh air intake amount tQac by the basic target excess air factor tLAMBDA0. A fuel injector (9) is controlled so that the amount of fuel injected thereby converges to a target fuel injection amount tQf which corresponds to the target excess air factor tLAMBDA. It is possible to prevent variation of the output torque of the engine (30) accompanying a rich spike by this control, even if the basic target excess air factor tLAMBDA0 varies abruptly, since the fuel injection amount varies in correspondence to the variation of the real fresh air intake amount rQac.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: March 2, 2004
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenji Oota, Hiroyuki Itoyama, Hiroshi Iwano, Kensuke Osamura, Takeshi Ishino
  • Patent number: 6687598
    Abstract: A method for controlling an engine comprises establishing a torque correction coefficient (KA) to compensate for reducing effect of available engine torque in operating range of different excess air ratios (&lgr;) that are lower than a predetermined value (unity=1). An initial base desired in-cylinder air mass (tQacb) is determined based on a requested engine torque (tTe). A desired excess air ratio (t&lgr;) is determined. The initial base desired in-cylinder air mass (tQacb) is adjusted with at least the desired excess air ratio (t&lgr;) and the correction coefficient (KA) to generate a desired in-cylinder air mass (tQac). A desired injected fuel mass (tQf) is controlled based on the desired in-cylinder air mass (tQac) to deliver the requested engine torque (tTe) with the desired excess air ratio (t&lgr;) held accomplished.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 3, 2004
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenji Oota, Hiroshi Iwano, Hiroyuki Itoyama, Takeshi Ishino, Kensuke Osamura
  • Patent number: 6640775
    Abstract: An air-fuel ratio control system for an internal combustion engine is comprised of an engine condition detecting unit and a control unit. The control unit is arranged to calculate a target engine torque on the basis of an engine operating condition, to calculate a target EGR ratio, a target excess air ratio and a target intake air quantity on the basis of the engine operating condition and the target engine torque, to calculate a target equivalence ratio on the basis of the target EGR ratio and the target excess air ratio, to calculate a target injection quantity on the basis of the engine operating condition and the target equivalence ratio, and to control an air-fuel ratio by bringing a real intake air quantity to the target intake air quantity and by bringing a real fuel injection quantity to the target fuel injection quantity.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: November 4, 2003
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroyuki Itoyama, Hiroshi Iwano, Kensuke Osamura, Kenji Oota
  • Patent number: 6624448
    Abstract: A semiconductor device having a supporting member that reduces a resonance phenomenon. A pair of reinforcing members is fixed on a gate drive substrate with spacers interposed there between and upright portions of the pair of reinforcing members are fastened with screws on a side wall of a cathode flange. A spacer is fixed on the gate drive substrate and a projection of the spacer is inserted in an engaging member fixed on the bottom of the cathode fin electrode and thus fixed on the bottom of the cathode fin electrode. The pair of upright portions as the first and second supporting points and the projection of the spacer as the third supporting point stably support the gate drive substrate on the cathode fin electrode without freedom of rotation at the three positions arranged to surround an opening.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 23, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazunori Taguchi, Kazuhiro Morishita, Kenji Oota
  • Patent number: 6521918
    Abstract: To make it possible to control turn-off operation even after switch over to transistor operation after commutation of the main current from cathode electrode to gate electrode in turn-off operation, a semiconductor device according to the invention comprises a first electrode, a first region of first conduction type provided on the first electrode, a second region of second conduction type provided on the first region, a third region and a fourth region of first conduction type respectively provided on the second region with a predetermined distance from each other to allow formation of a channel region on the second region, a fifth region of second conduction type provided on the third region, a second electrode provided on the fifth region, a gate electrode established in contact with the fourth region and a control electrode provided on a separate region between the third and fourth regions on the second region to control the channel region through an insulation layer.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: February 18, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Oota, Kazuhiro Morishita, Katsumi Satoh
  • Publication number: 20020139361
    Abstract: In air-fuel ratio control apparatus and method for an internal combustion engine having an EGR valve interposed in an EGR passage between an intake manifold and an exhaust manifold, a target EGR quantity is calculated, a determination is made which of air-fuel ratio feedback controls through an EGR control and through an intake-air quantity is to be executed according to the target EGR quantity, and one of the air-fuel ratio feedback controls is selectively made according to a result of a determination of which of the air-fuel feedback controls is to be executed. During an execution of a rich spike control, the feedback control through the intake-air quantity control is unconditionally executed.
    Type: Application
    Filed: March 11, 2002
    Publication date: October 3, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Itoyama, Hiroshi Iwano, Kensuke Osamura, Kenji Oota
  • Publication number: 20020143459
    Abstract: A method for controlling an engine comprises establishing a torque correction coefficient (KA) to compensate for reducing effect of available engine torque in operating range of different excess air ratios (&lgr;) that are lower than a predetermined value (unity=1). An initial base desired in-cylinder air mass (tQacb) is determined based on a requested engine torque (tTe). A desired excess air ratio (t&lgr;) is determined. The initial base desired in-cylinder air mass (tQacb) is adjusted with at least the desired excess air ratio (t&lgr;) and the correction coefficient (KA) to generate a desired in-cylinder air mass (tQac). A desired injected fuel mass (tQf) is controlled based on the desired in-cylinder air mass (tQac) to deliver the requested engine torque (tTe) with the desired excess air ratio (t&lgr;) held accomplished.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 3, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kenji Oota, Hiroshi Iwano, Hiroyuki Itoyama, Takeshi Ishino, Kensuke Osamura
  • Publication number: 20020124832
    Abstract: A basic target excess air factor tLAMBDA0 and a target fresh air intake amount tQac are set base upon the operation condition of an engine (30). A target excess air factor tLAMBDA is calculated by multiplying the ratio of a real fresh air intake amount rQac as detected by a sensor (16) and the target fresh air intake amount tQac by the basic target excess air factor tLAMBDA0. A fuel injector (9) is controlled so that the amount of fuel injected thereby converges to a target fuel injection amount tQf which corresponds to the target excess air factor tLAMBDA. It is possible to prevent variation of the output torque of the engine (30) accompanying a rich spike by this control, even if the basic target excess air factor tLAMBDA0 varies abruptly, since the fuel injection amount varies in correspondence to the variation of the real fresh air intake amount rQac.
    Type: Application
    Filed: November 21, 2001
    Publication date: September 12, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kenji Oota, Hiroyuki Itoyama, Hiroshi Iwano, Kensuke Osamura, Takeshi Ishino
  • Publication number: 20020105006
    Abstract: To make it possible to control turn-off operation even after switch over to transistor operation after commutation of the main current from cathode electrode to gate electrode in turn-off operation, a semiconductor device according to the invention comprises a first electrode, a first region of first conduction type provided on the first electrode, a second region of second conduction type provided on the first region, a third region and a fourth region of first conduction type respectively provided on the second region with a predetermined distance from each other to allow formation of a channel region on the second region, a fifth region of second conduction type provided on the third region, a second electrode provided on the fifth region, a gate electrode established in contact with the fourth region and a control electrode provided on a separate region between the third and fourth regions on the second region to control the channel region through an insulation layer.
    Type: Application
    Filed: May 9, 2000
    Publication date: August 8, 2002
    Inventors: Kenji Oota, Kazuhiro Morishita, Katsumi Satoh
  • Publication number: 20020100454
    Abstract: An air-fuel ratio control system for an internal combustion engine is comprised of an engine condition detecting unit and a control unit. The control unit is arranged to calculate a target engine torque on the basis of an engine operating condition, to calculate a target EGR ratio, a target excess air ratio and a target intake air quantity on the basis of the engine operating condition and the target engine torque, to calculate a target equivalence ratio on the basis of the target EGR ratio and the target excess air ratio, to calculate a target injection quantity on the basis of the engine operating condition and the target equivalence ratio, and to control an air-fuel ratio by bringing a real intake air quantity to the target intake air quantity and by bringing a real fuel injection quantity to the target fuel injection quantity.
    Type: Application
    Filed: January 11, 2002
    Publication date: August 1, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Itoyama, Hiroshi Iwano, Kensuke Osamura, Kenji Oota