Patents by Inventor Kenjirou Mihara

Kenjirou Mihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7830240
    Abstract: A multilayer positive temperature coefficient thermistor includes a ceramic body having semiconductor ceramic layers and internal electrodes, the semiconductor ceramic layers being mainly composed of BaTiO3 and containing semiconductor-forming agents, the semiconductor ceramic layers and the internal electrodes being alternately stacked, and the outermost layers of the ceramic body being formed of the semiconductor ceramic layers. The outermost layers serve as protective layers. The semiconductor ceramic layers arranged between the internal electrodes 4a and 4d serve as effective layers. The protective layers contain a semiconductor-forming agent having a larger ionic radius than that of a semiconductor-forming agent contained in the effective layers. The protective layers have a lower porosity than that of the effective layers.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: November 9, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenjirou Mihara, Atsushi Kishimoto
  • Patent number: 7764161
    Abstract: A barium titanate-based semiconductor ceramic composition and a PTC element that have a high Curie temperature and a low electrical resistivity at room temperature and that exhibit a desired rate of change in resistance are provided. The barium titanate-based semiconductor ceramic composition is a ceramic composition having a perovskite structure containing at least barium and titanium, wherein some of the barium is replaced with an alkali metal element, bismuth, and a rare earth element, and when the content of the titanium is assumed to be 100 parts by mole, a ratio of the content of the alkali metal element to the content of the bismuth plus the content of the rare earth element represented by parts by mole, is 1.00 or more and 1.06 or less. A PTC thermistor includes a ceramic body composed of the barium titanate-based semiconductor ceramic composition having the above feature and electrodes disposed on both side faces of the ceramic body.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: July 27, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hayato Katsu, Kenjirou Mihara, Hideaki Niimi
  • Patent number: 7679485
    Abstract: A multilayer positive temperature coefficient thermistor that has semiconductor ceramic layers containing a BaTiO3-based ceramic material as a primary component, and at least one element selected from the group consisting of Eu, Gd, Tb, Dy, Y, Ho, Er, and Tm as a semiconductor dopant in the range of 0.1 to 0.5 molar parts with respect to 100 molar parts of Ti. The ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006. Accordingly, even when the semiconductor ceramic layers have a low actual-measured sintered density in the range of 65% to 90% of a theoretical sintered density, a multilayer positive temperature coefficient thermistor having a sufficiently high rate of resistance change and a high rising coefficient of resistance at the Curie temperature or more can be realized.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: March 16, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Atsushi Kishimoto, Kenjirou Mihara, Hideaki Niimi
  • Patent number: 7649437
    Abstract: A multilayer positive temperature coefficient thermistor that has a BaTiO3-based ceramic material contained as a primary component in semiconductor ceramic layers, the ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006, and at least one element selected from the group consisting of La, Ce, Pr, Nd, and Pm is contained as a semiconductor dopant. In this multilayer positive temperature coefficient thermistor, a thickness d of internal electrodes layer and a thickness D of the semiconductor ceramic layers satisfy d?0.6 ?m and d/D<0.2. Accordingly, even when the semiconductor ceramic layers have a low sintered density such that an actual-measured sintered density is 65% to 90% of a theoretical sintered density, a multilayer positive temperature coefficient thermistor having a low rate of temporal change in room-temperature resistance can be obtained without performing any complicated processes, such as a heat treatment. When the content of the semiconductor dopant is 0.1 to 0.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: January 19, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenjirou Mihara, Atsushi Kishimoto, Hideaki Niimi
  • Publication number: 20100001828
    Abstract: A multilayer positive temperature coefficient thermistor includes a ceramic body having semiconductor ceramic layers and internal electrodes, the semiconductor ceramic layers being mainly composed of BaTiO3 and containing semiconductor-forming agents, the semiconductor ceramic layers and the internal electrodes being alternately stacked, and the outermost layers of the ceramic body being formed of the semiconductor ceramic layers. The outermost layers serve as protective layers. The semiconductor ceramic layers arranged between the internal electrodes 4a and 4d serve as effective layers. The protective layers contain a semiconductor-forming agent having a larger ionic radius than that of a semiconductor-forming agent contained in the effective layers. The protective layers have a lower porosity than that of the effective layers. Preferably, glass films are formed in pores in surfaces of the protective layers, and the protective layers have a porosity of 10% or less.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 7, 2010
    Inventors: Kenjirou Mihara, Atsushi Kishimoto
  • Publication number: 20090201121
    Abstract: A barium titanate-based semiconductor ceramic composition and a PTC element that have a high Curie temperature and a low electrical resistivity at room temperature and that exhibit a desired rate of change in resistance are provided. The barium titanate-based semiconductor ceramic composition is a ceramic composition having a perovskite structure containing at least barium and titanium, wherein some of the barium is replaced with an alkali metal element, bismuth, and a rare earth element, and when the content of the titanium is assumed to be 100 parts by mole, a ratio of the content of the alkali metal element to the content of the bismuth plus the content of the rare earth element represented by parts by mole, is 1.00 or more and 1.06 or less. A PTC thermistor includes a ceramic body composed of the barium titanate-based semiconductor ceramic composition having the above feature and electrodes disposed on both side faces of the ceramic body.
    Type: Application
    Filed: March 27, 2009
    Publication date: August 13, 2009
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Hayato Katsu, Kenjirou Mihara, Hideaki Niimi
  • Publication number: 20080204187
    Abstract: A multilayer positive temperature coefficient thermistor that has semiconductor ceramic layers containing a BaTiO3-based ceramic material as a primary component, and at least one element selected from the group consisting of Eu, Gd, Tb, Dy, Y, Ho, Er, and Tm as a semiconductor dopant in the range of 0.1 to 0.5 molar parts with respect to 100 molar parts of Ti. The ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006. Accordingly, even when the semiconductor ceramic layers have a low actual-measured sintered density in the range of 65% to 90 % of a theoretical sintered density, a multilayer positive temperature coefficient thermistor having a sufficiently high rate of resistance change and a high rising coefficient of resistance at the Curie temperature or more can be realized.
    Type: Application
    Filed: March 18, 2008
    Publication date: August 28, 2008
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Atsushi Kishimoto, Kenjirou Mihara, Hideaki Niimi
  • Publication number: 20080204186
    Abstract: A multilayer positive temperature coefficient thermistor that has a BaTiO3-based ceramic material contained as a primary component in semiconductor ceramic layers, the ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006, and at least one element selected from the group consisting of La, Ce, Pr, Nd, and Pm is contained as a semiconductor dopant. In this multilayer positive temperature coefficient thermistor, a thickness d of internal electrodes layer and a thickness D of the semiconductor ceramic layers satisfy d?0.6 ?m and d/D<0.2. Accordingly, even when the semiconductor ceramic layers have a low sintered density such that an actual-measured sintered density is 65% to 90% of a theoretical sintered density, a multilayer positive temperature coefficient thermistor having a low rate of temporal change in room-temperature resistance can be obtained without performing any complicated processes, such as a heat treatment. When the content of the semiconductor dopant is 0.1 to 0.
    Type: Application
    Filed: March 17, 2008
    Publication date: August 28, 2008
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Kenjirou Mihara, Atsushi Kishimoto, Hideaki Niimi
  • Patent number: 6984543
    Abstract: A method of producing a laminated PTC thermistor involves alternately laminating electroconductive pastes to form internal electrodes and ceramic green sheets to form semiconductor ceramic layers with a positive resistance-temperature characteristic to form a laminate, firing the laminate to form a ceramic piece, and forming external electrodes on both of the end-faces of the ceramic piece, and heat-treating the ceramic piece having the external electrodes formed thereon at a temperature between about 60° C. and 200° C.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: January 10, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenjirou Mihara, Atsushi Kishimoto, Hideaki Niimi
  • Publication number: 20040033629
    Abstract: A method of producing a laminated PTC thermistor involves alternately laminating electroconductive pastes to form internal electrodes and ceramic green sheets to form semiconductor ceramic layers with a positive resistance-temperature characteristic to form a laminate, firing the laminate to form a ceramic piece, and forming external electrodes on both of the end-faces of the ceramic piece, and heat-treating the ceramic piece having the external electrodes formed thereon at a temperature between about 60° C. and 200° C.
    Type: Application
    Filed: August 13, 2003
    Publication date: February 19, 2004
    Inventors: Kenjirou Mihara, Atsushi Kishimoto, Hideaki Niimi
  • Patent number: 6538318
    Abstract: A semiconductor ceramic for thermistors contains zinc oxide and titanium oxide as main components and a predetermined content of manganese. Also, a chip-type thermistor including the semiconductor ceramic is provided. By adding manganese, the resistance-temperature characteristic is controllable in the range of positive temperature coefficient to negative temperature coefficient. Also, by adding nickel, the resistivity is controllable. As a result, a thermistor material which provides a series of semiconductor ceramics having various resistivities and various B constants in a low range, for example 0 to 1,000 K, is available.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: March 25, 2003
    Assignee: Murata Manufacturing, Co., Ltd.
    Inventors: Kenji Nagareda, Kenjirou Mihara, Hideaki Niimi, Yuichi Takaoka
  • Publication number: 20020121696
    Abstract: A semiconductor ceramic for thermistors contains zinc oxide and titanium oxide as main components and a predetermined content of manganese. Also, a chip-type thermistor including the semiconductor ceramic is provided. By adding manganese, the resistance-temperature characteristic is controllable in the range of positive temperature coefficient to negative temperature coefficient. Also, by adding nickel, the resistivity is controllable. As a result, a thermistor material which provides a series of semiconductor ceramics having various resistivities and various B constants in a low range, for example 0 to 1,000 K, is available.
    Type: Application
    Filed: December 14, 2001
    Publication date: September 5, 2002
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Nagareda, Kenjirou Mihara, Hideaki Niimi, Yuichi Takaoka