Patents by Inventor Kenneth A. P. Meyer

Kenneth A. P. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220221624
    Abstract: Light control films comprise a light input surface and alight output surface opposite the light input surface and alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30 and are canted in the same direction. The alternating transmissive regions and absorbing regions have a maximum relative transmission at a viewing angle other than 0 degrees.
    Type: Application
    Filed: June 11, 2020
    Publication date: July 14, 2022
    Inventors: Raymond J. Kenney, Owen M. Anderson, Kevin W. Gotrik, Nicholas A. Johnson, Kenneth A. P. Meyer, Caleb T. Nelson, Daniel J. Schmidt
  • Publication number: 20220183153
    Abstract: A patterned article includes a unitary polymeric layer and a plurality of electrically conductive elements embedded at least partially in the unitary polymeric layer. Each electrically conductive element includes a conductive seed layer having a top major surface and an opposite bottom major surface in direct contact with the unitary polymeric layer, and includes a metallic body disposed on the top major surface of the conductive seed layer. The metallic body has a bottom major surface and at least one sidewall. The bottom major surface contacts the conductive seed layer. Each sidewall is in direct contact with the unitary polymeric layer and extends from the bottom major surface of the metallic body toward or to, but not past, a top major surface of the unitary polymeric layer. The conductive elements may be electrically isolated from one another. Processes for making the patterned article are described.
    Type: Application
    Filed: May 5, 2020
    Publication date: June 9, 2022
    Inventors: Raymond P. Johnston, John J. Sullivan, Matthew C. Messina, Charles D. Hoyle, Jaewon Kim, Haiyan Zhang, Matthew S. Stay, Robert A. Sainati, Kevin W. Gotrik, Kenneth A.P. Meyer, Gregory L. Abraham, Joseph C. Carls, Douglas S. Dunn
  • Publication number: 20220167499
    Abstract: A patterned conductive article 200 includes a substrate 210 including a unitary layer 210-1 and includes a micropattern of conductive traces 220 embedded at least partially in the unitary layer. Each conductive trace extends along a longitudinal direction (y-direction) of the conductive trace and includes a conductive seed layer 230 having a top major surface 232 and an opposite bottom major surface 234 in direct contact with the unitary layer; and a unitary conductive body 240 disposed on the top major surface of the conductive seed layer. The unitary conductive body and the conductive seed layer differ in at least one of composition or crystal morphology. The unitary conductive body has lateral sidewalls 242, 244 and at least a majority of a total area of the lateral sidewalls is in direct contact with the unitary layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: May 26, 2022
    Inventors: Raymond P. Johnston, Kevin W. Gotrik, John J. Sullivan, Kenneth A.P. Meyer, Joseph C. Carls, Haiyan Zhang, Gregory L. Abraham, Matthew S. Stay
  • Publication number: 20210271003
    Abstract: An optical element including an array of microlenses, a pinhole mask, and a wavelength selective filter is described. The pinhole mask includes an array of pinholes with each pinhole in the array of pinholes aligned with a microlens in the first array of microlenses. The wavelength selective filter is adapted to transmit a first light ray having a first wavelength and transmitted from a first microlens in the array of microlenses through a first pinhole in the array of pinholes aligned with the first microlens, and to attenuate a second light ray having the first wavelength and transmitted from the first microlens through a second pinhole in the array of pinholes aligned with a second microlens in the first array of microlenses adjacent to the first microlens.
    Type: Application
    Filed: August 8, 2019
    Publication date: September 2, 2021
    Inventors: Zhaohui Yang, Przemyslaw P. Markowicz, John A. Wheatley, Qingbing Wang, Mark A. Roehrig, Tri D. Pham, Serena L. Schleusner, Kenneth A.P. Meyer, Levent Biyikli, Thomas V. Weigman
  • Publication number: 20200164484
    Abstract: An article includes a polishing layer that includes a plurality of raised cells separated by a plurality of channels. Each of the plurality of raised cells includes a microstructured working surface, a substantially vertical channel surface, and an offset surface between an edge of the working surface and an upper edge of the channel surface. The microstructured working surface includes a plurality of microstructures. Tops of the plurality of microstructures define a top plane and bases of the plurality of microstructures define a base plane. The substantially vertical channel surface defines a wall of a channel of the plurality of channels and the channel surface defines a channel plane. The offset surface includes a nonplanar portion of displaced material. The displaced material defines a displacement plane that is below the base plane or within a tolerance of the top plane.
    Type: Application
    Filed: August 2, 2018
    Publication date: May 28, 2020
    Inventors: Kenneth A.P. Meyer, John J. Sullivan, Brian W. Lueck, Duy K. Lehuu, David J. Muradian, David F. Slama
  • Patent number: 10252396
    Abstract: The present disclosure relates to polishing pads which include a polishing layer, wherein the polishing layer includes a working surface and a second surface opposite the working surface. The working surface includes at least one of a plurality of precisely shaped pores and a plurality of precisely shaped asperities. The present disclosure further relates to a polishing system, the polishing system includes the preceding polishing pad and a polishing solution. The present disclosure relates to a method of polishing a substrate, the method of polishing including: providing a polishing pad according to any one of the previous polishing pads; providing a substrate, contacting the working surface of the polishing pad with the substrate surface, moving the polishing pad and the substrate relative to one another while maintaining contact between the working surface of the polishing pad and the substrate surface, wherein polishing is conducted in the presence of a polishing solution.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: April 9, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Duy K. Lehuu, Kenneth A. P. Meyer, Moses M. David
  • Patent number: 10105524
    Abstract: The present application provides articles (10) having a polymeric substrate (12) with a plurality of solid and/or hollow microneedles (20) extending therefrom. Each solid microneedle is formed by a molding process and the microneedle has body with first (30) and second cavities (40) extending therein. The hollow microneedles are formed by removing a portion of the polymeric material disposed between the first cavity and the second cavity. A method for determining the location of a microneedle in an article comprising solid microneedles is also provided. The method comprises directing electromagnetic radiation toward an article comprising a plurality of microneedles and imaging the article.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 23, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Kenneth A. P. Meyer, Przemyslaw P. Markowicz, Stanley Rendon, Robert L. W. Smithson, Ryan Patrick Simmers
  • Patent number: 10071461
    Abstract: The present disclosure relates to polishing pads which include a polishing layer, wherein the polishing layer includes a working surface and a second surface opposite the working surface. The working surface includes a plurality of precisely shaped pores, a plurality of precisely shaped asperities and a land region. The present disclosure further relates to a polishing system, the polishing system includes the preceding polishing pad and a polishing solution. The present disclosure relates to a method of polishing a substrate, the method of polishing including: providing a polishing pad according to any one of the previous polishing pads; providing a substrate, contacting the working surface of the polishing pad with the substrate surface, moving the polishing pad and the substrate relative to one another while maintaining contact between the working surface of the polishing pad and the substrate surface, wherein polishing is conducted in the presence of a polishing solution.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: September 11, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Duy K. Lehuu, Kenneth A. P. Meyer, Moses M. David
  • Publication number: 20180032181
    Abstract: Force-sensing capacitor elements and deformable membranes useful in electronic devices that include touch screen displays or other touch sensors. The deformable membranes, generally, include a first, second, and third layers with a first arrangement of a plurality of first structures interposed between the first and third layers and a second arrangement of one or more second structures interposed between the second and third layers. Electrodes may be included proximate to or in contact with one or more of the major surfaces of the first, second, and third layers or embedded within one or more of the second and third layers of the deformable membranes, yielding force-sensing capacitor elements. The electrodes proximate to or in contact with the one or more of the major surfaces of the first and second layers or embedded within one or more of the second and third layers may be one or more plurality of electrodes.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: Matthew H. Frey, Brian W. Lueck, Kenneth A. P. Meyer
  • Publication number: 20170182629
    Abstract: The present disclosure relates to polishing pads which include a polishing layer, wherein the polishing layer includes a working surface and a second surface opposite the working surface. The working surface includes a plurality of precisely shaped pores, a plurality of precisely shaped asperities and a land region. The present disclosure further relates to a polishing system, the polishing system includes the preceding polishing pad and a polishing solution. The present disclosure relates to a method of polishing a substrate, the method of polishing including: providing a polishing pad according to any one of the previous polishing pads; providing a substrate, contacting the working surface of the polishing pad with the substrate surface, moving the polishing pad and the substrate relative to one another while maintaining contact between the working surface of the polishing pad and the substrate surface, wherein polishing is conducted in the presence of a polishing solution.
    Type: Application
    Filed: March 31, 2015
    Publication date: June 29, 2017
    Inventors: Duy K. Lehuu, Kenneth A.P. Meyer, Moses M. David
  • Publication number: 20170173758
    Abstract: The present disclosure relates to polishing pads which include a polishing layer, wherein the polishing layer includes a working surface and a second surface opposite the working surface. The working surface includes at least one of a plurality of precisely shaped pores and a plurality of precisely shaped asperities. The present disclosure further relates to a polishing system, the polishing system includes the preceding polishing pad and a polishing solution. The present disclosure relates to a method of polishing a substrate, the method of polishing including: providing a polishing pad according to any one of the previous polishing pads; providing a substrate, contacting the working surface of the polishing pad with the substrate surface, moving the polishing pad and the substrate relative to one another while maintaining contact between the working surface of the polishing pad and the substrate surface, wherein polishing is conducted in the presence of a polishing solution.
    Type: Application
    Filed: March 31, 2015
    Publication date: June 22, 2017
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Duy K. Lehuu, Kenneth A.P. Meyer, Moses M. David
  • Publication number: 20170177114
    Abstract: Force-sensing capacitor elements and deformable membranes useful in electronic devices that include touch screen displays or other touch sensors. The deformable membranes, generally, include a first, second, and third layers with a first arrangement of a plurality of first structures interposed between the first and third layers and a second arrangement of one or more second structures interposed between the second and third layers. Electrodes may be included proximate to or in contact with one or more of the major surfaces of the first, second, and third layers or embedded within one or more of the second and third layers of the deformable membranes, yielding force-sensing capacitor elements. The electrodes proximate to or in contact with the one or more of the major surfaces of the first and second layers or embedded within one or more of the second and third layers may be one or more plurality of electrodes.
    Type: Application
    Filed: August 6, 2015
    Publication date: June 22, 2017
    Inventors: Matthew H. Frey, Brian W. Lueck, Kenneth A. P. Meyer
  • Publication number: 20160245486
    Abstract: The present disclosure describes advanced lighting elements, in particular solid-state lighting elements, and luminaires that include an array of lighting elements. The lighting elements, and luminaires including the lighting elements can exhibit benefits that include high optical efficiency and therefore high luminous efficacy; extraordinary directional control and therefore extraordinary glare control and efficacy of delivered lumens; and exceptional mixing of individual-device emission providing exceptional suppression of punch-through and color breakup. In many cases, the architecture can be amenable to low-cost manufacturing in a modular format.
    Type: Application
    Filed: October 15, 2014
    Publication date: August 25, 2016
    Inventors: David G. Freier, Michael A. Meis, Thomas R. Hoffend, Jr., Anthony J. Piekarczyk, Scott E. Simons, Matthew M. Philippi, Kenneth A. P. Meyer
  • Patent number: 9329311
    Abstract: The present disclosure provides a light control film that is capable of transmitting light, or allowing a viewer to observe information, only within a viewing region centered around the normal (perpendicular line) to a surface. The light control film generally blocks information or light outside of this viewing region, and provides security in all directions including right-and-left and up-and-down of the film. The light control film includes a plurality of light-transmissive cavities that are surrounded by a light absorbing material, such that each of the plurality of cavities is optically isolated from adjacent cavities. Each of the light-transmissive cavities effectively block light which enters the cavity outside of a viewing (that is, cutoff) angle.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 3, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kurt J. Halverson, Raymond J. Kenney, Brian W. Lueck, Kenneth A.P. Meyer, Scott M. Tapio, Michael E. Lauters, Olester Benson, Jr., Gary E. Gaides
  • Publication number: 20150306363
    Abstract: The present application provides articles (10) having a polymeric substrate (12) with a plurality of solid and/or hollow microneedles (20) extending therefrom. Each solid microneedle is formed by a molding process and the microneedle has body with first (30) and second cavities (40) extending therein. The hollow microneedles are formed by removing a portion of the polymeric material disposed between the first cavity and the second cavity. A method for determining the location of a microneedle in an article comprising solid microneedles is also provided. The method comprises directing electromagnetic radiation toward an article comprising a plurality of microneedles and imaging the article.
    Type: Application
    Filed: December 13, 2013
    Publication date: October 29, 2015
    Inventors: KENNETH A.P. MEYER, PRZEMYSLAW P. MARKOWICZ, STANLEY RENDON, ROBERT L.W. SMITHSON, RYAN PATRICK SIMMERS
  • Publication number: 20140204464
    Abstract: The present disclosure provides a light control film that is capable of transmitting light, or allowing a viewer to observe information, only within a viewing region centered around the normal (perpendicular line) to a surface. The light control film generally blocks information or light outside of this viewing region, and provides security in all directions including right-and-left and up-and-down of the film. The light control film includes a plurality of light-transmissive cavities that are surrounded by a light absorbing material, such that each of the plurality of cavities is optically isolated from adjacent cavities. Each of the light-transmissive cavities effectively block light which enters the cavity outside of a viewing (that is, cutoff) angle.
    Type: Application
    Filed: May 24, 2012
    Publication date: July 24, 2014
    Inventors: Kurt J. Halverson, Raymond J. Kenney, Brian W. Lueck, Kenneth A.P. Meyer, Scott M. Tapio, Michael E. Lauters, Olester Benson, JR., Gary E. Gaides
  • Patent number: 8192048
    Abstract: The present disclosure relates to illumination or lighting assemblies and systems that provide illumination using LEDs. In one aspect, the present disclosure provides a lighting assembly, comprising: multiple light emitting diodes that emit light; an optical system that directs the light emitted by the light emitting diodes, the optical system positioned adjacent to light emitting diodes; and a cooling fin including a two-phase cooling system, the cooling fin positioned adjacent to the light emitting diodes such that the two-phase cooling system removes heat from the light emitting diodes. In another aspect, the present disclosure provides a lighting system including multiple lighting assemblies.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: June 5, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Martin Kristoffersen, Rolf W. Biernath, Thomas R. Corrigan, David G. Freier, Raymond P. Johnston, Michael A. Meis, Kenneth A. P. Meyer, Vadim N. Savvateev, William A. Tolbert, Phillip E. Tuma
  • Patent number: 8098434
    Abstract: A decollimator for a daylighting system includes a conical section having a circular end, a square end, and a conical shape tapering inwardly from the circular end to the square end. A mixing zone section is attached to the square end of the conical section and has a square cross sectional shape of a substantially constant cross sectional dimension. The decollimator also includes either a window with a converging Fresnel lens on the circular end of the conical section, a window with a diverging Fresnel lens on an end of the mixing zone section opposite the conical section, or both. When the conical section receives collimated light, the conical section, the mixing zone section, and the Fresnel lens together decollimate the light and provide the decollimated light out of the mixing zone section.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: January 17, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas R. Hoffend, Jr., David G. Freier, Kenneth A. P. Meyer
  • Publication number: 20100271819
    Abstract: The present disclosure relates to illumination or lighting assemblies and systems that provide illumination using LEDs. In one aspect, the present disclosure provides a lighting assembly, comprising: multiple light emitting diodes that emit light; an optical system that directs the light emitted by the light emitting diodes, the optical system positioned adjacent to light emitting diodes; and a cooling fin including a two-phase cooling system, the cooling fin positioned adjacent to the light emitting diodes such that the two-phase cooling system removes heat from the light emitting diodes. In another aspect, the present disclosure provides a lighting system including multiple lighting assemblies.
    Type: Application
    Filed: November 18, 2009
    Publication date: October 28, 2010
    Inventors: Martin Kristoffersen, Rolf W. Biernath, Thomas R. Corrigan, David G. Freier, Raymond P. Johnston, Michael A. Meis, Kenneth A.P. Meyer, Vadim N. Savvateev, William A. Tolbert, Phillip E. Tuma