Patents by Inventor Kenneth Bush

Kenneth Bush has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11691027
    Abstract: Methods of treatment trajectory optimization for radiotherapy treatment of multiple targets include determining beam's eye view (BEV) regions and a BEV region connectivity manifold for each target group of a plurality of target groups separately. The information contained in the BEV regions and the BEV region connectivity manifolds for all target groups is used to guide an optimizer to find optimal treatment trajectories. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: July 4, 2023
    Assignees: SIEMENS HEALTHINEERS INTERNATIONAL AG, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Patent number: 11691028
    Abstract: Methods of beam angle optimization for intensity modulated radiotherapy (IMRT) treatment include determining beam's eye view (BEV) regions and a BEV region connectivity manifold by evaluating dose response of each region of interest for each vertex in a delivery coordinate space (DCS). The information contained in the BEV regions and the BEV region connectivity manifold is used to guide an optimizer to find optimal field geometries in the IMRT treatment. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: July 4, 2023
    Assignees: SIEMENS HEALTHINEERS INTERNATIONAL AG, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Publication number: 20210178188
    Abstract: Methods of treatment trajectory optimization for radiotherapy treatment of multiple targets include determining beam's eye view (BEV) regions and a BEV region connectivity manifold for each target group of a plurality of target groups separately. The information contained in the BEV regions and the BEV region connectivity manifolds for all target groups is used to guide an optimizer to find optimal treatment trajectories. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 17, 2021
    Applicants: Varian Medical Systems International AG, The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Publication number: 20210178189
    Abstract: Methods of beam angle optimization for intensity modulated radiotherapy (IMRT) treatment include determining beam's eye view (BEV) regions and a BEV region connectivity manifold by evaluating dose response of each region of interest for each vertex in a delivery coordinate space (DCS). The information contained in the BEV regions and the BEV region connectivity manifold is used to guide an optimizer to find optimal field geometries in the IMRT treatment. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 17, 2021
    Applicants: Varian Medical Systems International AG, The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Patent number: 10946217
    Abstract: Methods of beam angle optimization for intensity modulated radiotherapy (IMRT) treatment include determining beam's eye view (BEV) regions and a BEV region connectivity manifold by evaluating dose response of each region of interest for each vertex in a delivery coordinate space (DCS). The information contained in the BEV regions and the BEV region connectivity manifold is used to guide an optimizer to find optimal field geometries in the IMRT treatment. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 16, 2021
    Assignees: Varian Medical Systems International AG, The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Patent number: 10946216
    Abstract: Methods of treatment trajectory optimization for radiotherapy treatment of multiple targets include determining beam's eye view (BEV) regions and a BEV region connectivity manifold for each target group of a plurality of target groups separately. The information contained in the BEV regions and the BEV region connectivity manifolds for all target groups is used to guide an optimizer to find optimal treatment trajectories. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 16, 2021
    Assignees: Varian Medical Systems International AG, The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Publication number: 20200206531
    Abstract: Methods of treatment trajectory optimization for radiotherapy treatment of multiple targets include determining beam's eye view (BEV) regions and a BEV region connectivity manifold for each target group of a plurality of target groups separately. The information contained in the BEV regions and the BEV region connectivity manifolds for all target groups is used to guide an optimizer to find optimal treatment trajectories. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Applicants: Varian Medical Systems International AG, The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Publication number: 20200101320
    Abstract: Methods of beam angle optimization for intensity modulated radiotherapy (IMRT) treatment include determining beam's eye view (BEV) regions and a BEV region connectivity manifold by evaluating dose response of each region of interest for each vertex in a delivery coordinate space (DCS). The information contained in the BEV regions and the BEV region connectivity manifold is used to guide an optimizer to find optimal field geometries in the IMRT treatment. To improve the visibility of insufficiently exposed voxels of planning target volumes (PTVs), a post-processing step may be performed to enlarge certain BEV regions, which are considered for exposing during treatment trajectory optimization.
    Type: Application
    Filed: December 28, 2018
    Publication date: April 2, 2020
    Applicants: Varian Medical Systems International AG, The Board of Trustees of the Leland Stanford Junior University, Office of the General Counsel
    Inventors: Christopher Barry Locke, Santtu Ollila, Karl Kenneth Bush
  • Patent number: 6632136
    Abstract: A remote adjustment mechanism for the louvered cleaning elements of a combine harvester has a linearly movable output member directly fastened to the adjusting bar of each element. The actuator is driven by an electric motor. Calibration and feedback of the louver opening is provided by a pair of non-contact sensors sealed in the actuator housing. A first sensor sends a signal to a microprocessor controller when the output member is in a home position corresponding to a known louver opening. The second sensor sends a signal to the microprocessor that is responsive to movement of the output member. By tracking the movement of the output member from the home position, the current position of the output member is known from which the louver opening is determined based on the louver geometry.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: October 14, 2003
    Assignee: Deere & Company
    Inventors: Mark David Anderson, Jon Leo Burns, Martin Kenneth Bush, Heather Irene Chervenka, Jeff Arthur Nelson, Jack Richard Seyller, Duane Herbert Ziegler
  • Publication number: 20020183103
    Abstract: A remote adjustment mechanism for the louvered cleaning elements of a combine harvester has a linearly movable output member directly fastened to the adjusting bar of each element. The actuator is driven by an electric motor. Calibration and feedback of the louver opening is provided by a pair of non-contact sensors sealed in the actuator housing. A first sensor sends a signal to a microprocessor controller when the output member is in a home position corresponding to a known louver opening. The second sensor sends a signal to the microprocessor that is responsive to movement of the output member. By tracking the movement of the output member from the home position, the current position of the output member is known from which the louver opening is determined based on the louver geometry.
    Type: Application
    Filed: June 5, 2001
    Publication date: December 5, 2002
    Inventors: Mark David Anderson, Jon Leo Burns, Martin Kenneth Bush, Heather Irene Chervenka, Jeff Arthur Nelson, Jack Richard Seyller, Duane Herbert Ziegler
  • Patent number: 4865169
    Abstract: A clamping device for use with a gas spring in the form of a cylinder containing a gas, and a piston and piston rod movable within the cylinder. The clamping device is secured to the end of the cylinder through which the piston rod passes, and includes a clamping portion that engages and clamps around the piston rod to provide resistance to movement of the piston rod relative to the cylinder. The clamping device is a U-shaped structure having clamping legs that can be moved toward each other by a bolt and nut arrangement. The clamping device can be made from an injection molded plastic material, and the device permits continued use of the gas spring after the gas pressure has diminished to a level at which replacement of the spring would otherwise be required.
    Type: Grant
    Filed: June 20, 1988
    Date of Patent: September 12, 1989
    Assignee: Lem Rachels
    Inventors: Lem Rachels, Kenneth Bush