Patents by Inventor Kenneth C. Reichmann

Kenneth C. Reichmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110123195
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 26, 2011
    Applicant: AT&T INTELLECTUAL PROPERTY II, L.P.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7860393
    Abstract: A system and method for simultaneous delivery of a plurality of independent blocks of 500 MHz digital broadcast television services, stacking a plurality of RF blocks on a plurality of spectrally sliced WDM optical bands.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 28, 2010
    Assignee: AT&T Intellectual Property I, LP
    Inventors: Martin Birk, Patrick P. Iannone, Kenneth C. Reichmann, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7844179
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 30, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7746547
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: AT&T Corp.
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7738164
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: June 15, 2010
    Assignee: AT&T Corp.
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7725028
    Abstract: A system and method for simultaneous delivery of a plurality of independent blocks of 500 MHz digital broadcast television services, stacking a plurality of RF blocks on a plurality of spectrally sliced WDM optical bands.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 25, 2010
    Assignee: AT&T Intellectual Property I, LP
    Inventors: Martin Birk, Patrick P. Iannone, Kenneth C. Reichmann, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7626757
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before remultiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: December 1, 2009
    Assignee: AT&T Corp.
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Publication number: 20090272883
    Abstract: Spurious light is prevented from entering a cover of an optical fiber identification device by placing an opaque, flexible medium such as brush bristles within optical fiber clearance openings in the cover to block the light path around the fiber. Short opposing lengths of strip brushes are placing on either side of each of the slot openings in the cap. The opposing bristles make contact with each other in the slot, keeping out most ambient light. The strip brushes exert very little force on the fiber, permitting it to bend freely.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann
  • Publication number: 20090251768
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 8, 2009
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7567377
    Abstract: Several discrete hybrid amplifiers are used in parallel for amplifying an optical signal in an optical fiber system. An optical signal is first split into two or more separate signals each with a separate wavelength band. Each wavelength band is then amplified by a Raman pump utilizing a length of highly non-linear fiber as the gain medium, and by an SOA amplifier. The combination of the Raman amplifier and the SOA yields a level gain over the wavelength band. The amplified wavelength band signals are then recombined. The disclosed amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems and in local access portions of the network.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: July 28, 2009
    Assignee: AT&T Corp.
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Publication number: 20090148163
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 11, 2009
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Publication number: 20090080893
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Application
    Filed: December 2, 2008
    Publication date: March 26, 2009
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7466919
    Abstract: A system and method for simultaneous delivery of a plurality of independent blocks of 500 MHz digital broadcast television services, stacking a plurality of RF blocks on a plurality of spectrally sliced WDM optical bands.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 16, 2008
    Assignee: AT&T Corp.
    Inventors: Martin Birk, Patrick P. Iannone, Kenneth C. Reichmann, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7463412
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: December 9, 2008
    Assignee: AT&T Corp.
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7450847
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 11, 2008
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7450846
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: November 11, 2008
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7446933
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: November 4, 2008
    Assignee: AT&T Corp
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7443575
    Abstract: A discrete hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses one or more Raman laser pumps together with semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. The Raman pump utilizes a length of highly non-linear fiber as the gain medium. The disclosed lower-cost hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems and in local access portions of the network.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: October 28, 2008
    Assignee: AT&T Corp
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7342714
    Abstract: A multi-band hybrid amplifier is disclosed for use in optical fiber systems. The amplifier uses Raman laser pumps and semiconductor optical amplifiers in series to produce a relatively level gain across the frequency range of interest. Multiple Raman pumps are multiplexed before coupling into the fiber. The Raman amplified optical signal may be demultiplexed and separately amplified by the SOAs before re-multiplexing. Gain profiles of the Raman pumps and the SOAs are selected to compensate for gain tilt and to alleviate the power penalty due to cross-gain modulation in the SOAs. The disclosed hybrid amplifier is especially useful in coarse wavelength division multiplexing (CWDM) systems.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: March 11, 2008
    Assignee: AT&T Corp.
    Inventors: Patrick P. Iannone, Kenneth C. Reichmann, Xiang Zhou
  • Patent number: 7319817
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: January 15, 2008
    Assignee: AT&T Corp.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic