Patents by Inventor Kenneth Dahlberg

Kenneth Dahlberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140018892
    Abstract: An implantable medical lead comprises an outer lead package with an outer insulating tubing and a lead header having a window in its lateral surface. An inner lead package is at least partly arranged in lumens of the outer insulating tubing and the lead header and comprises a helical fixation element connected to a connector pin by an inner conductor coil, and a ring electrode connected to a connector ring by an outer conductor coil. An inner insulating tubing is coaxially arranged between the inner and outer conductor coils. The inner lead package is rotatable relative to the outer lead package and the ring electrode is configured to be at least partly exposed through the window.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: ST. JUDE MEDICAL AB
    Inventor: Kenneth Dahlberg
  • Patent number: 8521307
    Abstract: A medical implantable lead is adapted to be implanted into a human or animal body for monitoring and/or controlling of an organ inside the body, and has in a distal end, a combined fixation means and electrode member in form of a helix, which is rotatable in relation to the lead and extendable out from the distal end by rotation of a tubular torque transferring member. The helix is electrically connected to a connector in the proximal end by at least one electrically conducting wire, which is formed as an electrically conducting coil, which is separate from the tubular torque transferring member and that includes one or more individual wires each having an electrically conducting wire core and a surrounding electrically insulating layer. The tubular torque transferring member has no electrically conducting function to or from the helix.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: August 27, 2013
    Assignee: St. Jude Medical AB
    Inventors: Henrik Djurling, Kenneth Dahlberg, Mikael Forslund, Patrik Forsström, Leda Henriquez, Linn Olsen, Olof Stegfeldt, Åke Sivard
  • Patent number: 8442647
    Abstract: A medical implantable lead adapted to be implanted into a human or animal body for monitoring and/or controlling of an organ inside the body has a fixation in a distal end, which is adapted to fix a distal end of the lead to the organ, an electrode member in the distal end adapted to be in contact with tissue of the organ and receive and/or transmit electrical signals from and/or to the organ, and at least one electrically conducting coil, which includes one or more electrically conducting helical wires and that is adapted to connect the electrode member in the distal end with a monitoring and/or controlling device in a proximal end of the lead. One or more of the individual wires of the coil has a wire core that is provided with a surrounding electrically insulating layer, which in turn is provided with a surrounding electrically conducting shield layer, and the coil is close lapped such that electrically conducting shield layers of adjacent loops of the coil are in electrical contact with each other.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: May 14, 2013
    Assignee: St. Jude Medical AB
    Inventors: Hans Strandberg, Åke Sivard, Åsa Broomé, Kenneth Dahlberg, Gustav Pellijeff, Leda Henriquez
  • Patent number: 8437863
    Abstract: An implantable electrode lead for tissue stimulation adapted to be attached to an implantable tissue stimulator provided with a pulse generator, has at least two stimulation electrodes to apply stimulation pulses to said tissue and arranged close to the distal end of the electrode lead, and at least two electrical conductors to connect said electrodes to said pulse generator. The electrode lead further has a switching unit arranged close to the distal end of the electrode lead and adapted to switch the electrode lead between a local pacing mode and a normal pacing mode, the switching unit being controlled by a mode control signal. Further, a pacing module is arranged close to the distal end of the electrode lead and in relation to the switching unit and being connectable to said at least two stimulation electrodes, the pacing module includes a pulse generating unit to generate stimulating pulses to be applied to the tissue by the stimulation electrodes.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 7, 2013
    Assignee: St. Jude Medical AB
    Inventors: Åke Sivard, Gustav Pellijeff, Hans Strandberg, Leda Henriquez, Åsa Broomé, Kenneth Dahlberg
  • Patent number: 8239026
    Abstract: An implantable medical device has a hermetically sealed housing with at least one feedthrough therein for a conductive path between an RF antenna carried by the housing, and an RF telemetry circuit contained in the housing. The feedthrough has a feedthrough housing with a capacitor element therein having first and second capacitor plate configurations, with a first of the capacitor plate configurations being connected to the RF antenna and a second of the capacitor plate configurations being connected to the RF telemetry circuit. The feedthrough functions both as a hermetic seal and as a galvanic isolation for voltage protection of the components of the RF telemetry circuit, and other circuitry in the sealed housing connected thereto.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: August 7, 2012
    Assignee: St. Jude Medical AB
    Inventor: Kenneth Dahlberg
  • Publication number: 20120035693
    Abstract: A medical implantable lead is adapted to be implanted into a human or animal body for monitoring and/or controlling of an organ inside the body, and has in a distal end, a combined fixation means and electrode member in form of a helix, which is rotatable in relation to the lead and extendable out from the distal end by rotation of a tubular torque transferring member. The helix is electrically connected to a connector in the proximal end by at least one electrically conducting wire, which is formed as an electrically conducting coil, which is separate from the tubular torque transferring member and that includes one or more individual wires each having an electrically conducting wire core and a surrounding electrically insulating layer. The tubular torque transferring member has no electrically conducting function to or from the helix.
    Type: Application
    Filed: July 10, 2009
    Publication date: February 9, 2012
    Inventors: Henrik Djurling, Kenneth Dahlberg, Mikael Forslund, Patrik Forsström, Leda Henriquez, Linn Olsen, Olof Stegfeldt, Åke Sivard
  • Publication number: 20120022356
    Abstract: A medical implantable lead is adapted to be implanted into a human or animal body for monitoring and/or controlling of an organ inside the body. The lead has in a distal end, a combined fixation means and electrode member in form of a helix, which is connected to a rotatable tubular member being connected to a rotatable member at a proximal end of the lead, and which is rotatable in relation to the lead and extendable out from the distal end, by rotation of the control member and the tubular torque transferring member, to be able to fixate the distal end of the lead to the organ by being screwed into the tissue.
    Type: Application
    Filed: October 30, 2009
    Publication date: January 26, 2012
    Inventors: Linn Olsen, Mikael Forslund, Henrik Djurling, Patrik Forsström, Leda Henriquez, Kenneth Dahlberg, Olof Stegfeldt, Åke Sivard
  • Patent number: 8099177
    Abstract: A medically implantable lead configured for insertion into a human or animal body to be attached in the body with its distal end to tissue inside the body, as a rotatable helix at a distal end thereof that can be screwed into the tissue. The helix serves as an attachment of the lead to the tissue as well as a conductor for conducting electrical signals to the tissue through electrically conducting surfaces on the helix. The surfaces of the helix are partly insulated so as to restrict the conducting of signals between the helix and the tissue to desirable regions. The surfaces of the helix facing inwardly, toward an inner bore of the helix, are electrically insulated. In a method for manufacturing such a lead, the wire forming the helix has protrusions in desired areas and the wire including the protrusions is coated with an electrically insulating layer. The protrusions are uncovered from the insulating layer in desired regions.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: January 17, 2012
    Assignee: St. Jude Medical AB
    Inventor: Kenneth Dahlberg
  • Publication number: 20110251654
    Abstract: An implantable electrode lead for tissue stimulation adapted to be attached to an implantable tissue stimulator provided with a pulse generator, has at least two stimulation electrodes to apply stimulation pulses to said tissue and arranged close to the distal end of the electrode lead, and at least two electrical conductors to connect said electrodes to said pulse generator. The electrode lead further has a switching unit arranged close to the distal end of the electrode lead and adapted to switch the electrode lead between a local pacing mode and a normal pacing mode, the switching unit being controlled by a mode control signal. Further, a pacing module is arranged close to the distal end of the electrode lead and in relation to the switching unit and being connectable to said at least two stimulation electrodes, the pacing module includes a pulse generating unit to generate stimulating pulses to be applied to the tissue by the stimulation electrodes.
    Type: Application
    Filed: December 19, 2008
    Publication date: October 13, 2011
    Inventors: Åke Sivard, Gustav Pellijeff, Hans Strandberg, Leda Henriquez, Åsa Broomé, Kenneth Dahlberg
  • Publication number: 20110245646
    Abstract: A medical implantable lead adapted to be implanted into a human or animal body for monitoring and/or controlling of an organ inside the body has a fixation in a distal end, which is adapted to fix a distal end of the lead to the organ, an electrode member in the distal end adapted to be in contact with tissue of the organ and receive and/or transmit electrical signals from and/or to the organ, and at least one electrically conducting coil, which includes one or more electrically conducting helical wires and that is adapted to connect the electrode member in the distal end with a monitoring and/or controlling device in a proximal end of the lead. One or more of the individual wires of the coil has a wire core that is provided with a surrounding electrically insulating layer, which in turn is provided with a surrounding electrically conducting shield layer, and the coil is close lapped such that electrically conducting shield layers of adjacent loops of the coil are in electrical contact with each other.
    Type: Application
    Filed: December 2, 2008
    Publication date: October 6, 2011
    Inventors: Hans Strandberg, Åke Sivard, Åsa Broomé, Kenneth Dahlberg, Gustav Pellijeff, Leda Henriquez
  • Patent number: 7860581
    Abstract: An implantable lead for delivering electrical stimuli to a human heart has a stimulating electrode for transmitting electrical stimuli to the myocardium after implantation, and a mapping electrode for use during implantation. The mapping electrode is configured to deliver electrical stimuli to the heart and to sense intrinsic cardiac activity, for the purpose of finding a suitable fixation position in the myocardium. During the implantation procedure, the mapping electrode is electrically connected to the conductor. The lead is configured to electrically disconnect the mapping electrode from the conductor after a suitable fixation position has been determined.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: December 28, 2010
    Assignee: St. Jude Medical AB
    Inventors: Johan Eckerdal, Kenneth Dahlberg
  • Publication number: 20090171425
    Abstract: A medically implantable lead configured for insertion into a human or animal body to be attached in the body with its distal end to tissue inside the body, as a rotatable helix at a distal end thereof that can be screwed into the tissue. The helix serves as an attachment of the lead to the tissue as well as a conductor for conducting electrical signals to the tissue through electrically conducting surfaces on the helix. The surfaces of the helix are partly insulated so as to restrict the conducting of signals between the helix and the tissue to desirable regions. The surfaces of the helix facing inwardly, toward an inner bore of the helix, are electrically insulated. In a method for manufacturing such a lead, the wire forming the helix has protrusions in desired areas and the wire including the protrusions is coated with an electrically insulating layer. The protrusions are uncovered from the insulating layer in desired regions.
    Type: Application
    Filed: March 2, 2006
    Publication date: July 2, 2009
    Inventor: Kenneth Dahlberg
  • Publication number: 20080288040
    Abstract: An implantable lead for delivering electrical stimuli to a human heart has a stimulating electrode for transmitting electrical stimuli to the myocardium after implantation, and a mapping electrode for use during implantation. The mapping electrode is configured to deliver electrical stimuli to the heart and to sense intrinsic cardiac activity, for the purpose of finding a suitable fixation position in the myocardium. During the implantation procedure, the mapping electrode is electrically connected to the conductor. The lead is configured to electrically disconnect the mapping electrode from the conductor after a suitable fixation position has been determined.
    Type: Application
    Filed: October 31, 2005
    Publication date: November 20, 2008
    Inventors: Johan Eckerdal, Kenneth Dahlberg
  • Publication number: 20080228270
    Abstract: An implantable medical device has a hermetically sealed housing with at least one feedthrough therein for a conductive path between an RF antenna carried by the housing, and an RF telemetry circuit contained in the housing. The feedthrough has a feedthrough housing with a capacitor element therein having first and second capacitor plate configurations, with a first of the capacitor plate configurations being connected to the RF antenna and a second of the capacitor plate configurations being connected to the RF telemetry circuit. The feedthrough functions both as a hermetic seal and as a galvanic isolation for voltage protection of the components of the RF telemetry circuit, and other circuitry in the sealed housing connected thereto.
    Type: Application
    Filed: September 28, 2005
    Publication date: September 18, 2008
    Inventor: Kenneth Dahlberg
  • Patent number: 7330758
    Abstract: A heart monitoring device has a control circuit that derives an impedance value indicative of the impedance between different electrode surfaces. The control circuit determines and monitors a negative rate of change of the impedance value and determines whether the negative rate of change, or its absolute value, increases or decreases over a number of heart cycles. Alternatively or additionally, the control circuit may determine and monitor a relationship between a positive rate of change and a negative rate of change of the impedance value. The device can, in particular, be used to detect and treat a diastolic dysfunction of a heart.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: February 12, 2008
    Assignee: St. Jude Medical AB
    Inventors: Nils Holmström, Anna Norlin, Kenneth Dahlberg, Martin Obel
  • Patent number: 7241531
    Abstract: A battery unit has a battery encapsulation formed by first and second encapsulation parts joined by a weld along a weld zone, with a battery contained in the battery encapsulation between the first and second encapsulation parts. Either the battery has a recess exstending along the weld zone, or overlaping edges of the first and second encapsulation parts are bent away from the battery to form a recess. The recess provides a heating insulating space that protects the battery from damage during welding along the weld zone.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: July 10, 2007
    Assignee: St. Jude Medical AB
    Inventor: Kenneth Dahlberg
  • Patent number: 7187983
    Abstract: A fixation arrangement on the outer surface of an electrode head at distal end of a pacing lead includes an attachment mechanism having at least one tine, the tine being connected to the electrode head by a tine base portion that includes an electrically controlled heat-responsive positioner. The electrically controlled heat responsive positioner allows the angular position of the tine relative to the electrode head to be selective adjusted by a temperature change in the positioner.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 6, 2007
    Assignee: St. Jude Medical AB
    Inventors: Kenneth Dahlberg, Rolf Hill
  • Patent number: 7146208
    Abstract: A heart monitoring device has a control circuit, the control circuit being adapted to be electrically connected to electrode surfaces arranged at two different positions of the heart. The control circuit derives an impedance value indicative of the impedance between the electrode surfaces. Furthermore, the control circuit is arranged to determine and monitor a relationship between a positive rate of change and a negative rate of change of the impedance value. The device can, in particular, be used to detect and treat a systolic dysfunction of a heart.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: December 5, 2006
    Assignee: St. Jude Medical AB
    Inventors: Nils Holmström, Anna Norlin, Kenneth Dahlberg, Martin Obel
  • Publication number: 20060235325
    Abstract: A congestive heart failure monitor has an impedance measuring unit that measures the impedance between at least two electrodes implanted in a patient, to use a detected change of the measured impedance as an indication of a change in the left atrium volume. Any analyzing unit analyzes the measured impedance and detects insipient congestive heart failure dependent on a quotient of a maximum value of the measured impedance and a minimum value of the measured impedance during a cardiac cycle.
    Type: Application
    Filed: June 23, 2003
    Publication date: October 19, 2006
    Inventors: Nils Holmstrom, Martin Obel, Anna Norlin, Kenneth Dahlberg, Anders Bjorling, Sven Kalling, Karin Ljungstrom, Kjell Noren
  • Patent number: 7058452
    Abstract: In a process for manufacturing a female connector for a pacemaker, a tubular ceramic insert is formed with a longitudinal bore and with two radial holes connecting internal contact surfaces with external contact surfaces. The radial holes are filled with conductive material and the internal and external contact surfaces are metallized. The ceramic insert is covered with a layer of metal except for an area around each of the external contact surfaces.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: June 6, 2006
    Assignee: St. Jude Medical AB
    Inventor: Kenneth Dahlberg