Patents by Inventor Kenneth Dooley

Kenneth Dooley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240059808
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Patent number: 11850581
    Abstract: Techniques and systems for reducing fouling in a polymerization system are described. The polymerization system includes a reactor coupled to a recycle system. The recycle system includes at least one fouling-susceptible unit. The technique includes inducing polymerization of a reactant, for example, at least one olefin monomer reactant, with a catalyst in the reactor. The technique may further include circulating a fluidizing stream through the reactor and the at least one fouling-susceptible unit. The fluidizing stream may include entrained particles tending to foul the at least one fouling-susceptible unit. The technique can further include contacting the fluidizing stream with a catalyst poison at at least one location upstream of the at least one fouling-susceptible unit in the recycle system.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey S. Lowell, Kenneth A. Dooley, Ran Li, Darius Aruho
  • Patent number: 11845047
    Abstract: Systems and methods for improved mixing, including baffle systems, reactor systems, and methods of using the same are provided herein. These baffle systems include a ring having an exterior surface defining an outer diameter and an outer circumference, an interior surface defining an inner diameter and an inner circumference, a top surface, a bottom surface, and an axis; and one or more substantially vertical baffles extending from the interior surface of the ring toward the axis.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ralph J. Price, Kenneth A. Dooley
  • Patent number: 11845814
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: December 19, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Publication number: 20230374166
    Abstract: A purge system for a polymerization system may include a purge column including a stripping zone and a stripping fluid distributor below the stripping zone for injecting a stripping fluid including one or more light olefins. A first displacement zone is below the distributor. A second displacement zone is below the first displacement zone. A nitrogen distributor introduces nitrogen in the second displacement zone. Another purge system for a polymerization system may include a fluidized bed separator and a purge column. The fluidized bed separator includes a separator inlet, a stripping fluid inlet, a first stripped fluid outlet, and a separator outlet. The purge column includes a flake inlet, a stripping zone, a stripping fluid distributor below the stripping zone, a stripped flake outlet, and a second stripped fluid outlet for a second stripped fluid from the purge column.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph A. Curren, Rebecca A. Gonzales
  • Patent number: 11767378
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: September 26, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Publication number: 20230242684
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 3, 2023
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Publication number: 20230242685
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Application
    Filed: September 23, 2022
    Publication date: August 3, 2023
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Patent number: 11684904
    Abstract: Methods for operating a high pressure olefin polymerization reactor include the steps of introducing an initiator stream containing ethylene and an initiator compound through an initiator nozzle into the reactor, introducing an olefin stream containing ethylene and an optional comonomer through an olefin nozzle into the reactor, and polymerizing ethylene and optionally the comonomer in the presence of the initiator stream in the reactor under high pressure polymerization conditions to produce an ethylene polymer. The amount of ethylene in the initiator stream is from 0.01 to 2 wt. % of the amount of ethylene in the olefin stream. An injection nozzle that can be used in conjunction with the high pressure reactor also is described.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: June 27, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth A. Dooley, Corey W. Knight, Ralph J. Price, Joel A. Mutchler
  • Publication number: 20230122570
    Abstract: Methods for operating a high pressure olefin polymerization reactor include the steps of introducing an initiator stream containing ethylene and an initiator compound through an initiator nozzle into the reactor, introducing an olefin stream containing ethylene and an optional comonomer through an olefin nozzle into the reactor, and polymerizing ethylene and optionally the comonomer in the presence of the initiator stream in the reactor under high pressure polymerization conditions to produce an ethylene polymer. The amount of ethylene in the initiator stream is from 0.01 to 2 wt. % of the amount of ethylene in the olefin stream. An injection nozzle that can be used in conjunction with the high pressure reactor also is described.
    Type: Application
    Filed: October 14, 2021
    Publication date: April 20, 2023
    Inventors: Kenneth A. Dooley, Corey W. Knight, Ralph J. Price, Joel A. Mutchler
  • Patent number: 11466104
    Abstract: Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: October 11, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel A. Mutchler, Eric J. Netemeyer, Joseph A. Curren, Michael H. Treptau, Kenneth A. Dooley, Jeffrey S. Lowell, Jeffrey S. Fodor, Scott E. Kufeld
  • Publication number: 20220266211
    Abstract: Techniques and systems for reducing fouling in a polymerization system are described. The polymerization system includes a reactor coupled to a recycle system. The recycle system includes at least one fouling-susceptible unit. The technique includes inducing polymerization of a reactant, for example, at least one olefin monomer reactant, with a catalyst in the reactor. The technique may further include circulating a fluidizing stream through the reactor and the at least one fouling-susceptible unit. The fluidizing stream may include entrained particles tending to foul the at least one fouling-susceptible unit. The technique can further include contacting the fluidizing stream with a catalyst poison at at least one location upstream of the at least one fouling-susceptible unit in the recycle system.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: Jeffrey S. Lowell, Kenneth A. Dooley, Ran Li, Darius Aruho
  • Publication number: 20220177619
    Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Inventors: Scott E. Kufeld, Max P. McDaniel, Kenneth A. Dooley
  • Patent number: 11326003
    Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Max P. McDaniel, Kenneth A. Dooley
  • Patent number: 11312797
    Abstract: The present invention discloses methods for removing volatile components from an ethylene polymer effluent stream from a polymerization reactor, and related polyethylene recovery and volatile removal systems. In these methods and systems, the polymer solids temperature is increased significantly prior to introduction of the polymer solids into a purge column for the final stripping of volatile components from the polymer solids.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: April 26, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph A. Curren, Scott E. Kufeld
  • Publication number: 20220017668
    Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 20, 2022
    Inventors: Scott E. Kufeld, Max P. McDaniel, Kenneth A. Dooley
  • Patent number: 11173468
    Abstract: Systems and methods for improved degassing of polymer flake are provided herein. These systems include a polymerization reactor configured to polymerize one or more olefin monomers and produce a product stream comprising solid polymer flake entrained in a fluid; a flash chamber configured to separate the solid polymer flake from the fluid and to produce a fluid stream and a concentrated stream; and a first degassing chamber configured to separate the concentrated stream by contacting the concentrated stream with a purge fluid comprising one or more light hydrocarbons to produce a partially degassed polymer flake stream and a purge fluid stream.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: November 16, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph Curren
  • Publication number: 20200347156
    Abstract: The present invention discloses methods for removing volatile components from an ethylene polymer effluent stream from a polymerization reactor, and related polyethylene recovery and volatile removal systems. In these methods and systems, the polymer solids temperature is increased significantly prior to introduction of the polymer solids into a purge column for the final stripping of volatile components from the polymer solids.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph A. Curren, Scott E. Kufeld
  • Publication number: 20200330954
    Abstract: Systems and methods for improved degassing of polymer flake are provided herein. These systems include a polymerization reactor configured to polymerize one or more olefin monomers and produce a product stream comprising solid polymer flake entrained in a fluid; a flash chamber configured to separate the solid polymer flake from the fluid and to produce a fluid stream and a concentrated stream; and a first degassing chamber configured to separate the concentrated stream by contacting the concentrated stream with a purge fluid comprising one or more light hydrocarbons to produce a partially degassed polymer flake stream and a purge fluid stream.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph Curren
  • Patent number: 10774161
    Abstract: The present invention discloses methods for removing volatile components from an ethylene polymer effluent stream from a polymerization reactor, and related polyethylene recovery and volatile removal systems. In these methods and systems, the polymer solids temperature is increased significantly prior to introduction of the polymer solids into a purge column for the final stripping of volatile components from the polymer solids.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 15, 2020
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Joseph A. Curren, Scott E. Kufeld