Patents by Inventor Kenneth E. Beilstein, Jr.

Kenneth E. Beilstein, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5920101
    Abstract: A method of forming a sub-lithographic image formed by the intersection of two spacers. A substrate with a first pattern of selectively etchable material with sidewalls that are substantially vertical is provided. A first sidewall spacer is formed of a material that is selectively etchable relative to the first pattern material. A second pattern of a selectively etchable material is formed with the second pattern intersecting the first pattern. The sidewalls of the second pattern are substantially vertical as well. A second sidewall spacer is formed of a material that is selectively etchable relative to the second pattern material. The second pattern material is etched to leave the second sidewall spacer.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: July 6, 1999
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, James M. Leas, Jack A. Mandelman
  • Patent number: 5834818
    Abstract: A method of forming a sub-lithographic image formed by the intersection of two spacers. A substrate with a first pattern of selectively etchable material with sidewalls that are substantially vertical is provided. A first sidewall spacer is formed of a material that is selectively etchable relative to the first pattern material. A second pattern of a selectively etchable material is formed with the second pattern intersecting the first pattern. The sidewalls of the second pattern are substantially vertical as well. A second sidewall spacer is formed of a material that is selectively etchable relative to the second pattern material. The second pattern material is etched to leave the second sidewall spacer. Alternatively, the first and/or second pattern materials may be totally removed, left in place, or planarized.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: November 10, 1998
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, James M. Leas, Jack A. Mandelman
  • Patent number: 5714039
    Abstract: A method of forming a sub-lithographic image formed by the intersection of two spacers. A substrate with a first pattern of selectively etchable material with sidewalls that are substantially vertical is provided. A first sidewall spacer is formed of a material that is selectively etchable relative to the first pattern material. A second pattern of a selectively etchable material is formed with the second pattern intersecting the first pattern. The sidewalls of the second pattern are substantially vertical as well. A second sidewall spacer is formed of a material that is selectively etchable relative to the second pattern material. The second pattern material is etched to leave the second sidewall spacer. Alternatively, the first and/or second pattern materials may be totally removed, left in place, or planarized.
    Type: Grant
    Filed: October 4, 1995
    Date of Patent: February 3, 1998
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, James M. Leas, Jack A. Mandelman
  • Patent number: 5614277
    Abstract: This invention comprises various high production methods for simultaneously forming surface metallizations on a plurality of monolithic electronic modules. Each monolithic electronic module may comprise a single semiconductor chip or multiple semiconductor chips. The methods can employ a workpiece which automatically discontinues side surface metallization between different electronic modules in the stack. Multiple workpieces are interleaved within the stack between the electronic modules. Each workpiece may include a transfer layer(s) for permanent bonding to an end surface of an adjacent electronic module in the stack. This transfer layer may comprise an insulation layer, a metallization layer, an active circuit layer, or any combination thereof. End surface metallization can thus be provided contemporaneous with side surface metallization of multiple electronic modules.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: March 25, 1997
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, Wayne J. Howell
  • Patent number: 5596226
    Abstract: A fabrication method including a semiconductor chip kerf clear process and a resulting semiconductor chip and electronic module formed thereby. The fabrication method includes providing a wafer comprising a plurality of integrated circuit chips having kerf regions between them. Chip metallization is present within the kerf regions. A photolithography process is used to protect the wafer exposing only the kerf regions. Next, the wafer is etched, clearing the chip metallization from the kerf regions. The wafer is then diced and the chips are stacked to form a monolithic electronic module. A side surface of the electronic module is processed to expose transfer metals extending thereto, thereby facilitating electrical connection to the chips within the electronic module. Specific details of the fabrication method, resulting integrated circuit chips and monolithic electronic module are set forth.
    Type: Grant
    Filed: September 6, 1994
    Date of Patent: January 21, 1997
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, Timothy H. Daubenspeck, Wayne J. Howell
  • Patent number: 5567654
    Abstract: A fabrication method and resultant monolithic electronic module having a separately formed thin-film layer attached to a side surface. The fabrication method includes providing an electronic module composed of stacked integrated circuit chips. A thin-film layer is separately formed on a temporary support which is used to attach the thin-film layer to the electronic module. The disclosed techniques may also be used for attaching an interposer, which may include active circuity, to an electronic module. Specific details of the fabrication method, resulting multichip packages, and various thin-film structures are set forth.
    Type: Grant
    Filed: September 28, 1994
    Date of Patent: October 22, 1996
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, John E. Cronin, Wayne J. Howell, James M. Leas, David J. Perlman
  • Patent number: 5517754
    Abstract: This invention comprises various high production methods for simultaneously forming surface metallizations on a plurality of monolithic electronic modules. Each monolithic electronic module may comprise a single semiconductor chip or multiple semiconductor chips. The methods can employ a workpiece which automatically discontinues side surface metallization between different electronic modules in the stack. Multiple workpieces are interleaved within the stack between the electronic modules. Each workpiece may include a transfer layer(s) for permanent bonding to an end surface of an adjacent electronic module in the stack. This transfer layer may comprise an insulation layer, a metallization layer, an active circuit layer, or any combination thereof. End surface metallization can thus be provided contemporaneous with side surface metallization of multiple electronic modules.
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: May 21, 1996
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, Wayne J. Howell
  • Patent number: 5517057
    Abstract: Methods of fabrication for electronic modules having electrically interconnected side and end surface metallization layers and associated electronic modules are set forth. The methods include providing a stack comprising a plurality of stacked IC chips. A side surface thin-film metallization layer is formed on the stack. Next, an end surface thin-film metallization layer is formed the stack such that the side surface and end surface thin-film metallization layers directly electrically interconnect. Alternatively, each IC chip of a stack may include an end surface metallization layer such that separate formation of an end surface metallization layer on an end surface of the stack is unnecessary. The methods also include forming an electronic module by first providing a long stack of IC chips, testing the chips of the stack, and then segmenting the long stack into multiple small stacks of functional IC chips based upon the test results.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: May 14, 1996
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, John E. Cronin, Wayne J. Howell, James M. Leas, Robert B. Phillips
  • Patent number: 5466634
    Abstract: Methods of fabrication for electronic modules having electrically interconnected side and end surface metallization layers and associated electronic modules are set forth. The methods include providing a stack comprising a plurality of stacked IC chips. A side surface thin-film metallization layer is formed on the stack. Next, an end surface thin-film metallization layer is formed the stack such that the side surface and end surface thin-film metallization layers directly electrically interconnect. Alternatively, each IC chip of a stack may include an end surface metallization layer such that separate formation of an end surface metallization layer on an end surface of the stack is unnecessary. The methods also include forming an electronic module by first providing a long stack of IC chips, testing the chips of the stack, and then segmenting the long stack into multiple small stacks of functional IC chips based upon the test results.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: November 14, 1995
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, John E. Cronin, Wayne J. Howell, James M. Leas, Robert B. Phillips
  • Patent number: 5426566
    Abstract: Multichip integrated circuit packages and systems of multichip packages having reduced interconnecting lead lengths are disclosed. The multichip package includes a multiplicity of semiconductor chip layers laminated together in a unitized module. A first metallization pattern is connected to the integrated circuit chips on at least one side surface of the unitized module. In addition, at least one end surface of the module contains a second metallization pattern which is configured to facilitate connection of the package to an external signal source, such as another multichip package. The system includes at least two such packages which are electrically coupled via either metallization patterns provided on the end surface of the packagers. If required, a plurality of multichip packages can be directly coupled into the system in an analogous manner. Further specific details of the multichip package and the system of multichip packages are set forth herein.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: June 20, 1995
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, Howard L. Kalter, Gordon A. Kelley, Jr., Christopher P. Miller, Dale E. Pontius, Willem B. van der Hoeven, Steven Platt
  • Patent number: 5309318
    Abstract: A structure and method is disclosed for cooling a semiconductor computer chip module. The semiconductor computer chip module is made up of a plurality of semiconductor chips bonded together In one aspect of the present invention every other chip is staggered such that recesses are formed between protruding edges of every other chip along two opposite faces of the chip module. The opposite faces with the staggered chips are capped and sealed so that coolant channels are formed between the recesses and the sealing caps. In another aspect, one face of the chip module is bonded by a plurality of connectors to a base. The base and chip module with connectors form a chamber. The chamber is sealed and an opening is made in the base to circulate coolant into and around the connectors of the base and up along the coolant channels which are in fluid communication with the base. Thermal vias are provided between selected connectors and the chip module to conduct heat from the chips of the module to the connectors.
    Type: Grant
    Filed: August 18, 1993
    Date of Patent: May 3, 1994
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, Gordon A. Kelley, Jr., Christopher P. Miller
  • Patent number: 5260952
    Abstract: A logic system including a first logic block for providing first differential outputs; a second logic block, identical to the first logic block, for providing second differential outputs; a fault detecting device, coupled to the first logic block, for detecting a fault in the first differential outputs; and a selecting device, coupled to the first and second logic blocks and to the fault detecting device, for selecting an output of one of the first and second logic blocks depending on whether the fault detecting device detects a fault.
    Type: Grant
    Filed: April 30, 1991
    Date of Patent: November 9, 1993
    Assignee: IBM Corporation
    Inventors: Kenneth E. Beilstein, Jr., John A. Fifield, Lawrence G. Heller, Hsing-San Lee, Charles H. Stapper
  • Patent number: 5096849
    Abstract: A method is described for selectively masking sidewall regions of a concave surface formed in a semiconductor body, the method comprising the steps of: forming a conformal layer of masking material on a sidewall of the concave structure; emplacing in the concave structure, a selectively removable material that partially fills the concave structure, an upper surface of the material determining the edge of a region of the concave structure to be masked; removing a portion of the conformal layer above the upper surface of the selectively removable material; and removing the selectively removable material to leave a region of remaining conformal material as a mask.
    Type: Grant
    Filed: April 29, 1991
    Date of Patent: March 17, 1992
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, Francis R. White
  • Patent number: 5055898
    Abstract: A semiconductor memory cell, and methods of fabricating same, that includes a substrate (10) and a plurality of trench capacitors (12) formed at least partially within the substrate and dielectrically isolated therefrom. A silicon-on-insulator (SOI) region includes a silicon layer (16) that overlies an insulator (14). The silicon layer is differentiated into a plurality of active device regions, each of which is disposed above one of the electrically conductive regions. Each of the active device regions is coupled to an overlying first electrode, or wordline (20), for forming a gate node of an access transistor (1), to a second electrode, or bitline (32), for forming a source node of the access transistor, and to the underlying trench capacitor for forming a drain node of the access transistor.
    Type: Grant
    Filed: April 30, 1991
    Date of Patent: October 8, 1991
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Claude L. Bertin, John R. Pessetto, Francis R. White
  • Patent number: 4276095
    Abstract: A MOSFET device structure is disclosed where the channel region has formed therein a buried layer of dopant of the same conductivity type as the source and drain, so that the depletion layers for the PN junctions at the upper and lower boundaries thereof intersect in the middle of the implanted region, effectively forming a buried insulator layer between the source and drain. The presence of this layer increases the distance between the mirrored electrostatic charges in the gate and in the bulk of the substrate beneath the MOSFET, thereby reducing the sensitivity of the threshold voltage of the device to variations in the source to substrate voltage.
    Type: Grant
    Filed: March 12, 1979
    Date of Patent: June 30, 1981
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Harish N. Kotecha
  • Patent number: 4202044
    Abstract: A quaternary FET read only memory is disclosed wherein each FET storage element in the array has its threshold adjusted by ion-implantation to one of four values. Each FET element in the array has its drain connected to a drain potential V.sub.DD. A binary input signal from a conventional binary, true/complement generator will then enable the gate of a selected FET storage cell and the output potential at the source of that selected storage cell will be V.sub.DD minus the customized threshold voltage of that storage cell, which is output at an output node. The signal on the output node is a quaternary signal which may be amplified by a quaternary sense amplifier circuit and then converted from quaternary to binary signal by means of a converter. The quaternary read only memory is capable of storing twice as much information per unit area as is a conventional FET binary read only memory. The concept may be expanded to N levels of information storage, using FET array devices with N different threshold voltages.
    Type: Grant
    Filed: June 13, 1978
    Date of Patent: May 6, 1980
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Harish N. Kotecha
  • Patent number: RE32401
    Abstract: A quaternary FET read only memory is disclosed wherein each FET storage element in the array has its threshold adjusted by ion-implantation to one of four values. Each FET element in the array has its drain connected to a drain potential V.sub.DD. A binary input signal from a conventional binary, true/complement generator will then enable the gate of a selected FET storage cell and the output potential at the source of that selected storage cell will be V.sub.DD minus the customized threshold voltage of that storage cell, which is output at an output node. The signal on the output node is a quaternary signal which may be amplified by a quaternary sense amplifier circuit and then converted from quaternary to binary signal by means of a converter. The quaternary read only memory is capable of storing twice as much information per unit area as is a conventional FET binary read only memory. The concept may be expanded to N levels of information storage, using FET array devices with N different threshold voltages.
    Type: Grant
    Filed: February 27, 1981
    Date of Patent: April 14, 1987
    Assignee: International Business Machines Corporation
    Inventors: Kenneth E. Beilstein, Jr., Harish N. Kotecha