Patents by Inventor Kenneth E. Builta
Kenneth E. Builta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10739791Abstract: A method and apparatus provide for automatically controlling the flight of a tiltrotor aircraft while the aircraft is in flight that is at least partially rotor-borne. The method and apparatus provide for automatically tilting nacelles in response to a longitudinal-velocity control signal so as to produce a longitudinal thrust-vector component for controlling longitudinal velocity of the aircraft. Simultaneously, cyclic swashplate controls are automatically actuated so as to maintain the fuselage in a desired pitch attitude. The method and apparatus also provide for automatically actuating the cyclic swashplate controls for each rotor in response to a lateral-velocity control signal so as to produce a lateral thrust-vector component for controlling lateral velocity of the aircraft. Simultaneously, collective swashplate controls for each rotor are automatically actuated so as to maintain the fuselage in a desired roll attitude.Type: GrantFiled: June 26, 2019Date of Patent: August 11, 2020Assignee: Textron Innovations Inc.Inventor: Kenneth E. Builta
-
Publication number: 20200064867Abstract: A method and apparatus provide for automatically controlling the flight of a tiltrotor aircraft while the aircraft is in flight that is at least partially rotor-borne. The method and apparatus provide for automatically tilting nacelles in response to a longitudinal-velocity control signal so as to produce a longitudinal thrust-vector component for controlling longitudinal velocity of the aircraft. Simultaneously, cyclic swashplate controls are automatically actuated so as to maintain the fuselage in a desired pitch attitude. The method and apparatus also provide for automatically actuating the cyclic swashplate controls for each rotor in response to a lateral-velocity control signal so as to produce a lateral thrust-vector component for controlling lateral velocity of the aircraft. Simultaneously, collective swashplate controls for each rotor are automatically actuated so as to maintain the fuselage in a desired roll attitude.Type: ApplicationFiled: June 26, 2019Publication date: February 27, 2020Applicant: Textron Innovations Inc.Inventor: Kenneth E. Builta
-
Patent number: 10338606Abstract: A method and apparatus provide for automatically controlling the flight of a tiltrotor aircraft while the aircraft is in flight that is at least partially rotor-borne. The method and apparatus provide for automatically tilting nacelles in response to a longitudinal-velocity control signal so as to produce a longitudinal thrust-vector component for controlling longitudinal velocity of the aircraft. Simultaneously, cyclic swashplate controls are automatically actuated so as to maintain the fuselage in a desired pitch attitude. The method and apparatus also provide for automatically actuating the cyclic swashplate controls for each rotor in response to a lateral-velocity control signal so as to produce a lateral thrust-vector component for controlling lateral velocity of the aircraft. Simultaneously, collective swashplate controls for each rotor are automatically actuated so as to maintain the fuselage in a desired roll attitude.Type: GrantFiled: December 22, 2017Date of Patent: July 2, 2019Assignee: Textron Innovations Inc.Inventor: Kenneth E. Builta
-
Publication number: 20180136668Abstract: A method and apparatus provide for automatically controlling the flight of a tiltrotor aircraft while the aircraft is in flight that is at least partially rotor-borne. The method and apparatus provide for automatically tilting nacelles in response to a longitudinal-velocity control signal so as to produce a longitudinal thrust-vector component for controlling longitudinal velocity of the aircraft. Simultaneously, cyclic swashplate controls are automatically actuated so as to maintain the fuselage in a desired pitch attitude. The method and apparatus also provide for automatically actuating the cyclic swashplate controls for each rotor in response to a lateral-velocity control signal so as to produce a lateral thrust-vector component for controlling lateral velocity of the aircraft. Simultaneously, collective swashplate controls for each rotor are automatically actuated so as to maintain the fuselage in a desired roll attitude.Type: ApplicationFiled: December 22, 2017Publication date: May 17, 2018Applicant: BELL HELICOPTER TEXTRON INC.Inventor: Kenneth E. Builta
-
Patent number: 9851723Abstract: A method and apparatus provide for automatically controlling the flight of a tiltrotor aircraft while the aircraft is in flight that is at least partially rotor-borne. The method and apparatus provide for automatically tilting nacelles in response to a longitudinal-velocity control signal so as to produce a longitudinal thrust-vector component for controlling longitudinal velocity of the aircraft. Simultaneously, cyclic swashplate controls are automatically actuated so as to maintain the fuselage in a desired pitch attitude. The method and apparatus also provide for automatically actuating the cyclic swashplate controls for each rotor in response to a lateral-velocity control signal so as to produce a lateral thrust-vector component for controlling lateral velocity of the aircraft. Simultaneously, collective swashplate controls for each rotor are automatically actuated so as to maintain the fuselage in a desired roll attitude.Type: GrantFiled: July 29, 2004Date of Patent: December 26, 2017Assignee: Textron Innovations Inc.Inventor: Kenneth E. Builta
-
Patent number: 9218002Abstract: A method for operating an aircraft to prevent/recover from a stall condition includes the steps of detecting an actual vertical velocity of the aircraft, calculating vertical velocity error of the aircraft, the vertical velocity error being based upon a comparison between the actual vertical velocity of the aircraft and a commanded vertical velocity of the aircraft, and determining if the aircraft is in one of a near stalled condition and a stalled condition based upon at least the detected vertical velocity error and the polarity of the vertical velocity error. The method further includes the steps of taking control of the aircraft from an operator of the aircraft, reducing a bank angle of the aircraft, pitching the aircraft downward, and increasing the airspeed of the aircraft if the aircraft's airspeed is outside an airspeed window if the aircraft is in one of the near stalled condition and the stalled condition.Type: GrantFiled: February 7, 2011Date of Patent: December 22, 2015Assignee: Textron Innovations Inc.Inventors: Kynn J. Schulte, Robert L. Fortenbaugh, Kenneth E. Builta
-
Publication number: 20130030607Abstract: A method for operating an aircraft to prevent/recover from a stall condition includes the steps of detecting an actual vertical velocity of the aircraft, calculating vertical velocity error of the aircraft, the vertical velocity error being based upon a comparison between the actual vertical velocity of the aircraft and a commanded vertical velocity of the aircraft, and determining if the aircraft is in one of a near stalled condition and a stalled condition based upon at least the detected vertical velocity error and the polarity of the vertical velocity error. The method further includes the steps of taking control of the aircraft from an operator of the aircraft, reducing a bank angle of the aircraft, pitching the aircraft downward, and increasing the airspeed of the aircraft if the aircraft's airspeed is outside an airspeed window if the aircraft is in one of the near stalled condition and the stalled condition.Type: ApplicationFiled: February 7, 2011Publication date: January 31, 2013Applicant: BELL HELICOPTER TEXTRON INC.Inventors: Kynn J. Schulte, Robert L. Fortenbaugh, Kenneth E. Builta
-
Patent number: 8271149Abstract: The difference between a first position of a first pylon of a tiltrotor aircraft and a second position of a second pylon of the aircraft is prevented from becoming too large. An actuator position error for the first pylon is calculated from a difference between the first position and a commanded first position of the first pylon. An actuator position error for the second pylon is calculated from a difference between the second position and a commanded second position of the second pylon. An absolute value of the actuator position error for the first pylon is compared to the preset limit. If the absolute value of the actuator position error for the first pylon is greater than or equal to a preset limit, the actuator position error for the second pylon is calculated from the difference between the first position and the second position.Type: GrantFiled: August 21, 2006Date of Patent: September 18, 2012Assignee: Bell Helicopter Textron Inc.Inventor: Kenneth E. Builta
-
Patent number: 8108085Abstract: A system for controlling flight of an aircraft has sensors, a receiver, and a digital control system, all of which are carried aboard the aircraft. The sensors determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver receives transmitted data communicating the position and movement of a reference vehicle relative to the earth. The control system calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors and the receiver and then commands flight control devices on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.Type: GrantFiled: May 18, 2011Date of Patent: January 31, 2012Assignee: Textron Innovations Inc.Inventors: Kenneth E. Builta, James E. Harris, Bryan P. Honza, Jeffrey W. Epp, Kynn J. Schulte
-
Patent number: 8078395Abstract: A flight control system for an aircraft is configured for receiving command signals representing commanded values of a location of a geospatial point and a radius about the geospatial point for defining a circular groundtrack. A sensor determines a geospatial location of the aircraft and provides a location signal representing the location of the aircraft. A controller for commanding flight control devices on the aircraft controls the flight of the aircraft and is configured to receive the command signals and the location signal. The controller uses the command signals and location signal to operate the flight control devices to control the flight of the aircraft for directing the aircraft generally toward a tangent point of the circular groundtrack and then maintaining a flight path along the circular groundtrack.Type: GrantFiled: November 15, 2005Date of Patent: December 13, 2011Assignee: Bell Helicopter Textron Inc.Inventors: Kenneth E. Builta, James E. Harris, Billy K. Gore
-
Publication number: 20110270474Abstract: A system for controlling flight of an aircraft has sensors, a receiver, and a digital control system, all of which are carried aboard the aircraft. The sensors determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver receives transmitted data communicating the position and movement of a reference vehicle relative to the earth. The control system calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors and the receiver and then commands flight control devices on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.Type: ApplicationFiled: May 18, 2011Publication date: November 3, 2011Inventors: Kenneth E. Builta, James E. Harris, Bryan P. Honza, Jeffrey W. Epp, Kynn J. Schulte
-
Patent number: 8014909Abstract: A system for controlling flight of an aircraft has sensors (37, 43), a receiver (45), and a digital control system (57), all of which are carried aboard the aircraft. The sensors (37, 43) determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver (45) receives transmitted data (51, 55) communicating the position and movement of a reference vehicle relative to the earth. The control system (57) calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors (37, 43) and the receiver (45) and then commands flight control devices (33) on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.Type: GrantFiled: March 25, 2004Date of Patent: September 6, 2011Assignee: Bell Helicopter Textron Inc.Inventors: Kenneth E. Builta, James E. Harris, Bryan P. Honza, Jeffrey W. Epp, Kynn J. Schulte
-
Patent number: 7931238Abstract: A flight control system for an aircraft receives a selected value of a first parameter, which is either the airspeed or inertial velocity of the aircraft. A primary feedback loop generates a primary error signal that is proportional to the difference between the selected value and a measured value of the first parameter. A secondary feedback loop generates a secondary error signal that is proportional to the difference between the selected value of the first parameter and a measured value of a second flight parameter, which is the other of the airspeed and inertial velocity. The primary and secondary error signals are summed to produce a velocity error signal, and the velocity error signal and an integrated value of the primary error signal are summed to produce an actuator command signal. The actuator command signal is then used for operating aircraft devices to control the first parameter to minimize the primary error signal.Type: GrantFiled: September 12, 2005Date of Patent: April 26, 2011Assignee: Bell Helicopter Textron Inc.Inventors: Kenneth E. Builta, Kynn J. Schulte
-
Publication number: 20090312891Abstract: The difference between a first position of a first pylon of a tiltrotor aircraft and a second position of a second pylon of the aircraft is prevented from becoming too large. An actuator position error for the first pylon is calculated from a difference between the first position and a commanded first position of the first pylon. An actuator position error for the second pylon is calculated from a difference between the second position and a commanded second position of the second pylon. An absolute value of the actuator position error for the first pylon is compared to the preset limit. If the absolute value of the actuator position error for the first pylon is greater than or equal to a preset limit, the actuator position error for the second pylon is calculated from the difference between the first position and the second position.Type: ApplicationFiled: August 21, 2006Publication date: December 17, 2009Applicant: Bell Helicopter Textron Inc.Inventor: Kenneth E. Builta
-
Patent number: 7617024Abstract: One embodiment of the present invention is a method for automatically reducing the effect of a component of an external force that is laterally incident on a rotorcraft. A signal of the rotorcraft indicative of and proportional to the component is monitored. An absolute value of the signal and a preset high limit are compared. If the absolute value is greater than the preset high limit, manual heading control of the rotorcraft is disabled and the heading of the rotorcraft is adjusted with respect to the external force so as to decrease the lateral component of the external force experienced by the rotorcraft.Type: GrantFiled: September 22, 2006Date of Patent: November 10, 2009Assignee: Bell Helicopter Textron Inc.Inventor: Kenneth E. Builta
-
Patent number: 7571879Abstract: One embodiment of the present invention is a method for automatically controlling the conversion of a tiltrotor aircraft. An airspeed command for the tiltrotor aircraft is received. The airspeed command is converted to a pylon position. A difference between the airspeed command and a measured airspeed is calculated. The difference between the airspeed command and a measured airspeed is converted to a dynamic pylon position. A total pylon position is calculated from the pylon position and the dynamic pylon position. A pylon of the tiltrotor aircraft is moved to the total pylon position. Another embodiment of the present invention is a system for calculating a position of a pylon of a tiltrotor aircraft based on an airspeed command. The system includes an airspeed command module, a pylon trim position module, a dynamic pylon position module, and a pylon position module.Type: GrantFiled: September 22, 2006Date of Patent: August 11, 2009Assignee: Bell Helicopter Textron Inc.Inventors: Kenneth E. Builta, Kynn J. Schulte, James E. Harris, Billy K. Gore
-
Publication number: 20090114764Abstract: One embodiment of the present invention is a method for automatically controlling the conversion of a tiltrotor aircraft. An airspeed command for the tiltrotor aircraft is received. The airspeed command is converted to a pylon position. A difference between the airspeed command and a measured airspeed is calculated. The difference between the airspeed command and a measured airspeed is converted to a dynamic pylon position. A total pylon position is calculated from the pylon position and the dynamic pylon position. A pylon of the tiltrotor aircraft is moved to the total pylon position. Another embodiment of the present invention is a system for calculating a position of a pylon of a tiltrotor aircraft based on an airspeed command. The system includes an airspeed command module, a pylon trim position module, a dynamic pylon position module, and a pylon position module.Type: ApplicationFiled: September 22, 2006Publication date: May 7, 2009Applicant: Bell Helicopter Textron Inc.Inventors: Kenneth E. Builta, Kynn J. Schulte, James E. Harris, Billy K. Gore
-
Publication number: 20080308682Abstract: A flight control system for an aircraft receives a selected value of a first parameter, which is either the airspeed or inertial velocity of the aircraft. A primary feedback loop generates a primary error signal that is proportional to the difference between the selected value and a measured value of the first parameter. A secondary feedback loop generates a secondary error signal that is proportional to the difference between the selected value of the first parameter and a measured value of a second flight parameter, which is the other of the airspeed and inertial velocity. The primary and secondary error signals are summed to produce a velocity error signal, and the velocity error signal and an integrated value of the primary error signal are summed to produce an actuator command signal. The actuator command signal is then used for operating aircraft devices to control the first parameter to minimize the primary error signal.Type: ApplicationFiled: September 12, 2005Publication date: December 18, 2008Inventors: Kenneth E. Builta, Kynn J. Schulte
-
Publication number: 20080243371Abstract: A flight control system for an aircraft is configured for receiving command signals representing commanded values of a location of a geospatial point and a radius about the geospatial point for defining a circular groundtrack. A sensor determines a geospatial location of the aircraft and provides a location signal representing the location of the aircraft. A controller for commanding flight control devices on the aircraft controls the flight of the aircraft and is configured to receive the command signals and the location signal. The controller uses the command signals and location signal to operate the flight control devices to control the flight of the aircraft for directing the aircraft generally toward a tangent point of the circular groundtrack and then maintaining a flight path along the circular groundtrack.Type: ApplicationFiled: November 15, 2005Publication date: October 2, 2008Inventors: Kenneth E. Builta, James E. Harris, Billy K. Gore
-
Publication number: 20080075591Abstract: One embodiment of the present invention is a method for automatically reducing the effect of a component of an external force that is laterally incident on a rotorcraft. A signal of the rotorcraft indicative of and proportional to the component is monitored. An absolute value of the signal and a preset high limit are compared. If the absolute value is greater than the preset high limit, manual heading control of the rotorcraft is disabled and the heading of the rotorcraft is adjusted with respect to the external force so as to decrease the lateral component of the external force experienced by the rotorcraft.Type: ApplicationFiled: September 22, 2006Publication date: March 27, 2008Applicant: Bell Helicopter Textron Inc.Inventor: Kenneth E. Builta