Patents by Inventor Kenneth Edward Hrdina

Kenneth Edward Hrdina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952305
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 9, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20240069429
    Abstract: A glass including silica and titania is disclosed. An average hydroxyl concentration of a plurality segments of the glass is in a range from about 20 ppm to about 450 ppm, an average titania concentration of the plurality of segments is in a range from about 6 wt. % to about 12 wt. %, and each segment of the plurality of segments has a length of about 12.7 mm, a width of about 12.7 mm, and a height of about 7.62 mm. The hydroxyl concentration of each segment is measured using a Fourier transform infrared spectroscopy in transmission, the refractive index is measured using an optical interferometer with a 633 nm operating wavelength and a resolution of 270 microns×270 microns pixel size, and the average titania concentration is determined based upon the measured refractive index.
    Type: Application
    Filed: August 21, 2023
    Publication date: February 29, 2024
    Inventors: Michael John Campion, Kenneth Edward Hrdina, Nicolas LeBlond, John Edward Maxon
  • Patent number: 11891331
    Abstract: A system and method for nitridizing a glass article includes supplying a source of a nitridizing gas including gaseous NH3 to a glass article supported within a furnace assembly and heating the glass article. In some embodiments, the system includes a handle assembly configured to support the glass article within the furnace assembly and a gas supply conduit carried by the handle and configured to supply the nitridizing gas to the glass article. In some embodiments, a method of nitridizing a glass article includes supplying the nitridizing gas such that a residence time of the nitridizing gas at temperatures greater than 500° C. corresponds to a predetermined time period. In some embodiments, a method of nitridizing a glass article includes supplying the nitridizing gas such that the glass articles is exposed to the nitridizing gas within a contact time tc.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: February 6, 2024
    Assignee: Corning Incorporated
    Inventors: Kenneth Edward Hrdina, Ming-Jun Li, Haitao Zhang
  • Patent number: 11753327
    Abstract: Methods, apparatuses and systems of manufacturing an optical fiber are disclosed herein. The methods may include heating an optical preform in a draw furnace, drawing an optical fiber from the optical preform, cooling the optical fiber with a slow cooling device, and annealing the optical fiber by passing the optical fiber through an RF plasma heating apparatus.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: September 12, 2023
    Assignee: Corning Incorporated
    Inventors: Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Patent number: 11724954
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 15, 2023
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Patent number: 11621147
    Abstract: A system, having: an RF power source; an RF matching network electrically coupled to the RF power source; an impedance matching circuit electrically coupled to the RF matching network, wherein the impedance matching circuit has a first adjustable capacitor connected in series with the RF matching network and a second adjustable capacitor connected in parallel with the first capacitor; and an inductive process load electrically coupled to the impedance matching circuit.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: April 4, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Carl William Almgren, Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Patent number: 11500149
    Abstract: An optical fiber can include a core comprising silica co-doped with nitrogen and chlorine and an outer cladding surrounding the core. In some aspects, the core can be characterized by an annealing temperature of less than or equal to about 1150° C. and/or the core can include a relative refractive index ?core in a range of from about 0.15% to about 0.45%.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: November 15, 2022
    Assignee: Corning Incorporated
    Inventors: Richard Michael Fiacco, Kenneth Edward Hrdina, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Publication number: 20220250964
    Abstract: A silica-titania glass substrate comprising: (i) a composition comprising 5 weight percent to 10 weight percent TiO2; (ii) a coefficient of thermal expansion (CTE) at 20° C. in a range from ?45 ppb/K to +20 ppb/K; (iii) a crossover temperature (Tzc) in a range from 10° C. to 50° C.; (iv) a slope of CTE at 20° C. in a range from 1.20 ppb/K2 to 1.75 ppb/K2; (v) a refractive index variation of less than 140 ppm; and (vi) 600 ppm OH group concentration or greater. The substrate can have a mass of 1 kg or greater and less than 0.05 gas inclusions per cubic inch via a method comprising (i) forming the substrate from soot particles comprising SiO2 and TiO2, and (ii) subjecting the substrate to an environment having an elevated temperature and an elevated pressure for a period of time until the substrate comprises less than 0.05 gas inclusions per cubic inch.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 11, 2022
    Inventors: Michael John Campion, Kenneth Edward Hrdina, John Edward Maxon
  • Publication number: 20220098085
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20220081357
    Abstract: Embodiments of the present disclosure are directed to salt bath systems for strengthening glass articles including a salt bath tank defining a first interior volume enclosed by at least one sidewall; a salt bath composition including an alkali metal salt positioned within the first interior volume; a containment device defining a second interior volume enclosed by at least one sidewall and including a regeneration medium positioned within the second interior volume; and a circulation device positioned proximate to an inlet of the containment device, wherein the circulation device is operable to circulate the salt bath composition through the containment device. Methods for regenerating a molten salt are also disclosed.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 17, 2022
    Inventors: Sinue Gomez-Mower, Kenneth Edward Hrdina, Kai Tod Paul Jarosch, Yuhui Jin, Tyler John Lucci, Wei Sun, Madison Kathleen Tindle
  • Publication number: 20210384010
    Abstract: A system, having: an RF power source; an RF matching network electrically coupled to the RF power source; an impedance matching circuit electrically coupled to the RF matching network, wherein the impedance matching circuit has a first adjustable capacitor connected in series with the RF matching network and a second adjustable capacitor connected in parallel with the first capacitor; and an inductive process load electrically coupled to the impedance matching circuit.
    Type: Application
    Filed: January 22, 2021
    Publication date: December 9, 2021
    Inventors: Carl William Almgren, Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Publication number: 20210355020
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Publication number: 20210349257
    Abstract: An optical fiber can include a core comprising silica co-doped with nitrogen and chlorine and an outer cladding surrounding the core. In some aspects, the core can be characterized by an annealing temperature of less than or equal to about 1150° C. and/or the core can include a relative refractive index ?core in a range of from about 0.15% to about 0.45%.
    Type: Application
    Filed: April 21, 2021
    Publication date: November 11, 2021
    Inventors: Richard Michael Fiacco, Kenneth Edward Hrdina, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Publication number: 20210347690
    Abstract: A system and method for nitridizing a glass article includes supplying a source of a nitridizing gas including gaseous NH3 to a glass article supported within a furnace assembly and heating the glass article. In some embodiments, the system includes a handle assembly configured to support the glass article within the furnace assembly and a gas supply conduit carried by the handle and configured to supply the nitridizing gas to the glass article. In some embodiments, a method of nitridizing a glass article includes supplying the nitridizing gas such that a residence time of the nitridizing gas at temperatures greater than 500° C. corresponds to a predetermined time period. In some embodiments, a method of nitridizing a glass article includes supplying the nitridizing gas such that the glass articles is exposed to the nitridizing gas within a contact time tc.
    Type: Application
    Filed: April 23, 2021
    Publication date: November 11, 2021
    Inventors: Kenneth Edward Hrdina, Ming-Jun Li, Haitao Zhang
  • Publication number: 20210292228
    Abstract: Embodiments described herein are directed to compositions, systems, and processes for strengthening glass articles, which also minimize the concentration of decomposition products in the molten salt baths used in ion exchange processes to extend salt bath life and maintain the chemical durability of strengthened glass articles over time. The salt bath compositions may generally include from 90 wt. % to 99.9 wt. % of one or more alkali or metal salts and from 0.1 wt. % to 10 wt. % of silicic acid aggregates based on the total weight of the salt bath composition.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 23, 2021
    Inventors: John Steele Abbott, JR., Tonia Havewala Fletcher, Sinue Gomez-Mower, Kenneth Edward Hrdina, Daniel Arthur Sternquist
  • Patent number: 11111172
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 7, 2021
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Patent number: 11028006
    Abstract: Annealing treatments for modified titania-silica glasses and the glasses produced by the annealing treatments. The annealing treatments include an isothermal hold that facilitates equalization of non-uniformities in fictive temperature caused by non-uniformities in modifier concentration in the glasses. The annealing treatments may also include heating the glass to a higher temperature following the isothermal hold and holding the glass at that temperature for several hours. Glasses produced by the annealing treatments exhibit high spatial uniformity of CTE, CTE slope, and fictive temperature, including in the presence of a spatially non-uniform concentration of modifier.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 8, 2021
    Assignee: Corning Incorporated
    Inventors: Sezhian Annamalai, Carlos Alberto Duran, Kenneth Edward Hrdina, William Rogers Rosch
  • Publication number: 20210068249
    Abstract: A PCB laminate material includes at least one polymer layer and at least one inorganic layer, such that the PCB laminate material has a dielectric loss tangent of less than 6×10?3 at 10 GHz (or higher frequency). The inorganic layer or layers of the PCB laminate material may comprise silica-based materials (including silica fabrics), low-loss glass with a dielectric loss tangent of about 0.006 at 10 GHz (or higher frequency), glass-ceramics, or ceramic materials (e.g., alumina). PCB laminate materials may also include at least one fluoropolymer layer. PCB laminate materials described herein combine good dielectric performance (i.e., low dielectric loss), dimensional stability at elevated temperature (e.g., at 260° C. for 30 seconds), and sufficient mechanical strength to permit handling during production. Printed circuit boards comprising the PCB laminate materials and methods for making the same are also disclosed herein.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 4, 2021
    Inventors: William Peter Addiego, Heather Debra Boek, Jennifer Anella Heine, Kenneth Edward Hrdina, Dayue Jiang, Geraint Owen, Paul George Rickerl, Tora Ann-Beatrice Eline SIrkka, WIlliam Richard Trutna
  • Publication number: 20200399163
    Abstract: Methods, apparatuses and systems of manufacturing an optical fiber are disclosed herein. The methods may include heating an optical preform in a draw furnace, drawing an optical fiber from the optical preform, cooling the optical fiber with a slow cooling device, and annealing the optical fiber by passing the optical fiber through an RF plasma heating apparatus.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 24, 2020
    Inventors: Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Patent number: 10781129
    Abstract: A method of forming a glass article is provided. The method includes the steps of positioning a first interface surface of a first glass block proximate a second interface surface of a second glass block to define an interface seam, welding the first and second glass blocks together around a majority of the interface seam to define an internal cavity, coupling a vacuum fitting to at least one of the first and second glass blocks, drawing a vacuum in the cavity between the first and second glass blocks, and heating the first and second glass blocks to fuse the first and second glass blocks together.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 22, 2020
    Assignee: Corning Incorporated
    Inventors: Sezhian Annamalai, Kenneth Edward Hrdina, Xinghua Li