Patents by Inventor Kenneth Flanders

Kenneth Flanders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230154875
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 18, 2023
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter R. Stubler
  • Publication number: 20230133481
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter R. Stubler
  • Patent number: 11569182
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 31, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter R. Stubler
  • Patent number: 11538709
    Abstract: A transfer printing method is described that can be used for a wide variety of materials, such as to allow for circuits formed of different materials to be integrated together on a single integrated circuit. A tether (18) is formed on dice regions (16) of a first wafer (30), followed by attachment of a second wafer (32) to the tethers. The dice regions (16) are processed so as to be separated, followed by transfer printing of the dice regions to a third wafer (34).
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: December 27, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventors: James G. Fiorenza, Susan L. Feindt, Michael D. Delaus, Matthew Duffy, Ryan Iutzi, Kenneth Flanders, Rama Krishna Kotlanka
  • Publication number: 20210134641
    Abstract: A transfer printing method is described that can be used for a wide variety of materials, such as to allow for circuits formed of different materials to be integrated together on a single integrated circuit. A tether (18) is formed on dice regions (16) of a first wafer (30), followed by attachment of a second wafer (32) to the tethers. The dice regions (16) are processed so as to be separated, followed by transfer printing of the dice regions to a third wafer (34).
    Type: Application
    Filed: February 17, 2018
    Publication date: May 6, 2021
    Inventors: James G. Fiorenza, Susan L. Feindt, Michael D. Delaus, Matthew Duffy, Ryan lutzi, Kenneth Flanders, Rama Krishna Kotlanka
  • Publication number: 20210118871
    Abstract: Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 22, 2021
    Inventors: Daniel Piedra, James G. Fiorenza, Puneet Srivastava, Andrew Proudman, Kenneth Flanders, Denis Michael Murphy, Leslie P. Green, Peter A. Stubler
  • Patent number: 9878901
    Abstract: Thick (i.e., greater than two microns), fine-grained, low-stress tungsten MEMS structures are fabricated at low temperatures, particularly for so-called “MEMS last” fabrication processes (e.g., when MEMS structures are fabricated after electronic circuitry is fabricated). Means for very accurately etching structural details from the deposited tungsten layer and for strongly and stably anchoring the tungsten layer to an underlying substrate are disclosed. Also, means for removing a sacrificial layer underlying the mobile tungsten layer without damaging the tungsten or allowing it to be drawn down and stuck by surface tension is disclosed.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 30, 2018
    Assignee: Analog Devices, Inc.
    Inventors: John A. Geen, George M. Molnar, Gregory S. Davis, Bruce Ma, Kenneth J. Cole, James Timony, Kenneth Flanders
  • Publication number: 20150336790
    Abstract: Thick (i.e., greater than two microns), fine-grained, low-stress tungsten MEMS structures are fabricated at low temperatures, particularly for so-called “MEMS last” fabrication processes (e.g., when MEMS structures are fabricated after electronic circuitry is fabricated). Means for very accurately etching structural details from the deposited tungsten layer and for strongly and stably anchoring the tungsten layer to an underlying substrate are disclosed. Also, means for removing a sacrificial layer underlying the mobile tungsten layer without damaging the tungsten or allowing it to be drawn down and stuck by surface tension is disclosed.
    Type: Application
    Filed: March 27, 2015
    Publication date: November 26, 2015
    Inventors: John A. Geen, George M. Molnar, Gregory S. Davis, Bruce Ma, Kenneth J. Cole, James Timony, Kenneth Flanders