Patents by Inventor Kenneth G. Witte

Kenneth G. Witte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8620397
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 31, 2013
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Patent number: 8140140
    Abstract: An apparatus for analyzing the composition of bodily fluid. The apparatus comprises a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient; and a pump unit in operative engagement with the fluid handling network. The pump unit has an infusion mode in which the pump unit is operable to deliver infusion fluid to the patient through the patient end, and a sample draw mode in which the pump unit is operable to draw a sample of the bodily fluid from the patient through the patient end. The apparatus further comprises a spectroscopic analyzer positioned to analyze at least a portion of the sample; a processor in communication with or incorporated into the spectroscopic analyzer; and stored program instructions executable by the processor to obtain measurements of two or more properties of the sample.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: March 20, 2012
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Kenneth G. Witte, Peter Rule, Richard Keenan, W. Dale Hall
  • Publication number: 20100221762
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Application
    Filed: October 5, 2009
    Publication date: September 2, 2010
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Publication number: 20100030137
    Abstract: An apparatus is provided for monitoring a predetermined parameter of a patient's body fluid while infusing an infusion fluid into the patient. The apparatus comprises an infusion line and a catheter configured for insertion into a blood vessel of the patient, and a reversible infusion pump connected between a source of an infusion fluid and the infusion line and catheter. The apparatus further comprises a body fluid sensor assembly mounted in fluid communication with the infusion line and which includes a first sensor and a sample cell. The first sensor provides a signal indicative of a predetermined parameter of any fluid present in the infusion line. The sample cell is substantially transmissive to light comprising a wavelength ?. The apparatus further comprises a controller that is configured to operate the infusion pump in a forward direction so as to pump the infusion fluid through the infusion line and catheter for infusion into the patient.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 4, 2010
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventors: W. Dale Hall, David N. Callicoat, Jennifer H. Gable, James R. Braig, Kenneth G. Witte, Mark Wechsler, Peter Rule, Richard Keenan
  • Publication number: 20090045342
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Application
    Filed: June 16, 2008
    Publication date: February 19, 2009
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Publication number: 20080268486
    Abstract: An analyte detection system is configured to measure concentrations of at least first and second analytes in a single material sample supported by a sample element. The measurement of a second analyte can be conditioned on a quantitative or qualitative result of the first measurement. In one embodiment, the first analyte is glucose and the second analyte is a ketone. According to such an embodiment the ketone is measured if the result of the glucose measurement exceeds a previously-specified value or falls outside of a previously-specified range.
    Type: Application
    Filed: July 10, 2008
    Publication date: October 30, 2008
    Applicant: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Peter Rule, Kenneth G. Witte, Philip C. Hartstein, Bernhard B. Sterling
  • Patent number: 7388202
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: June 17, 2008
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Publication number: 20080077072
    Abstract: An embodiment of an analyte detection system includes a fluid transport network having a patient end configured to provide fluid communication with a body fluid in a patient and a body fluid analyzer accessible via the fluid transport network. The body fluid analyzer is configured to determine a level of an analyte of interest. A pump unit is coupled to the fluid transport network and has a sample input mode and an infusion mode. In the sample input mode, the pump unit is operable to transport a sample of the body fluid from the patient end and toward the body fluid analyzer. In the infusion mode, the pump unit is operable to transport an infusion fluid toward and out the patient end. The analyte detection system also includes a user interface for communication with the body fluid analyzer. The user interface includes a trend display portion that includes a trend indicator, which depicts a trend in determined levels of the analyte of interest.
    Type: Application
    Filed: August 15, 2006
    Publication date: March 27, 2008
    Inventors: Richard Keenan, Richard A. King, Heather T. Wisor, James R. Braig, Kenneth G. Witte
  • Patent number: 7096124
    Abstract: A method determines an analyte concentration in a sample including the analyte and a substance. The method includes providing an absorption spectrum of the sample. The absorption spectrum has an absorption baseline. The method further includes shifting the absorption spectrum so that the absorption baseline approximately equals a selected absorption value in a selected absorption wavelength range. The method further includes subtracting a substance contribution from the absorption spectrum. Thus, the method provides a corrected absorption spectrum substantially free of a contribution from the substance.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: August 22, 2006
    Assignee: Optiscan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Kenneth G. Witte
  • Patent number: 7050157
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: May 23, 2006
    Assignee: OptiScan Biomedical Corp.
    Inventors: James R. Braig, Peter Rule, Robert D. Gaffney, Philip C. Hartstein, Julian M. Cortella, Kenneth I. Li, Bernhard B. Sterling, Peng Zheng, W. Dale Hall, Kenneth G. Witte, Mark D. Agostino, Daniel S. Goldberger
  • Patent number: 6959211
    Abstract: A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: October 25, 2005
    Assignee: OptiScan Biomedical Corp.
    Inventors: Peter Rule, James R. Braig, Daniel S. Goldberger, Julian M. Cortella, Heidi M. Smith, Roger O. Herrera, Kenneth G. Witte, Philip C. Hartstein, Mark D. Agostino
  • Patent number: 6917038
    Abstract: An analyte detection system non-invasively determines the concentration of an analyte in a sample generating a sample infrared signal indicative of the concentration of the analyte in the sample. The detection system includes a window assembly for receiving the sample infrared signal. The window assembly is adapted to allow the sample infrared signal to transmit therethrough, and generates a window infrared signal. The detection system further includes at least one detector configured to receive both the window infrared signal and the sample infrared signal transmitted through the window assembly. The detector is further adapted to generate a detector signal in response thereto. The detection system further includes a correction module configured to generate a corrected detector signal indicative of the concentration of the analyte in the sample.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: July 12, 2005
    Assignee: Optiscan Biomedical Corporation
    Inventors: Peng Zheng, Jennifer H. Gable, W. Dale Hall, Kenneth G. Witte, James R. Braig
  • Publication number: 20040242975
    Abstract: A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
    Type: Application
    Filed: August 6, 2002
    Publication date: December 2, 2004
    Inventors: Peter Rule, James R. Braig, Daniel S. Goldberger, Julian M. Cortella, Heidi M. Smith, Roger O. Herrera, Kenneth G. Witte, Philip C. Hartstein, Mark D. Agostino
  • Patent number: 6825044
    Abstract: A device and method for determining analyte concentrations within a material sample are provided. A modulating temperature gradient is induced in the sample and resultant, emitted infrared radiation is measured at selected analyte absorbance peaks and reference wavelengths. The modulating temperature gradient is controlled by a surface temperature modulation. A transfer function relating the surface temperature modulation to a modulation of the measured infrared radiation is provided. Phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the material sample. A method for adjusting an analyte measurement is provided. The method provides a hydration correction process for calibration and correction whereby analyte concentrations within the material sample may be determined.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: November 30, 2004
    Assignee: Optiscan Biomedical Corporation
    Inventors: Peng Zheng, Jennifer H. Gable, W. Dale Hall, Kenneth G. Witte, James R. Braig
  • Publication number: 20040132171
    Abstract: An analyte detection system includes a first wearable module, a detector, and a processor. The first wearable module has an optical input through which electromagnetic radiation may enter said first wearable module. The first wearable module is configured to be worn on and engage a living wearer's body such that electromagnetic radiation omitted by the body of the wearer can enter the first wearable module via the optical input. The detector is in optical communication with the optical input. The processor is in communication with the detector. The processor is configured to estimate the concentration of an analyte in the wearer's tissue based on the emitted electromagnetic radiation.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 8, 2004
    Inventors: Peter Rule, James R. Braig, Roger O. Herrera, Kenneth G. Witte, Michael Munrow, Philip C. Hartstein
  • Publication number: 20030146385
    Abstract: An analyte detection system non-invasively determines the concentration of an analyte in a sample generating a sample infrared signal indicative of the concentration of the analyte in the sample. The detection system includes a window assembly for receiving the sample infrared signal. The window assembly is adapted to allow the sample infrared signal to transmit therethrough, and generates a window infrared signal. The detection system further includes at least one detector configured to receive both the window infrared signal and the sample infrared signal transmitted through the window assembly. The detector is further adapted to generate a detector signal in response thereto. The detection system further includes a correction module configured to generate a corrected detector signal indicative of the concentration of the analyte in the sample.
    Type: Application
    Filed: November 21, 2002
    Publication date: August 7, 2003
    Inventors: Peng Zheng, Jennifer H. Gable, W. Dale Hall, Kenneth G. Witte, James R. Braig
  • Publication number: 20030143116
    Abstract: A device and method for determining analyte concentrations within a material sample are provided. A modulating temperature gradient is induced in the sample and resultant, emitted infrared radiation is measured at selected analyte absorbance peaks and reference wavelengths. The modulating temperature gradient is controlled by a surface temperature modulation. A transfer function relating the surface temperature modulation to a modulation of the measured infrared radiation is provided. Phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the material sample. A method for adjusting an analyte measurement is provided. The method provides a hydration correction process for calibration and correction whereby analyte concentrations within the material sample may be determined.
    Type: Application
    Filed: November 21, 2002
    Publication date: July 31, 2003
    Inventors: Peng Zheng, Jennifer H. Gable, W. Dale Hall, Kenneth G. Witte, James R. Braig
  • Publication number: 20030090649
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Application
    Filed: January 21, 2002
    Publication date: May 15, 2003
    Inventors: Bernhard B. Sterling, Philip C. Hartstein, Kenneth I. Li, Mark D. Agostino, David C. Klonoff, Robert D. Gaffney, Peng Zheng, Jennifer H. Gable, Kenneth G. Witte, Heidi M. Smith, Jane J. Sheill, Mike A. Munrow, W. Dale Hall, Daniel S. Goldberger, Martin J. Fennell, Julian M. Cortella, James R. Braig, Peter Rule
  • Publication number: 20030086073
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Application
    Filed: July 19, 2002
    Publication date: May 8, 2003
    Inventors: James R. Braig, Peter Rule, Robert D. Gaffney, Philip C. Hartstein, Julian M. Cortella, Kenneth I. Li, Bernhard B. Sterling, Peng Zheng, W. Dale Hall, Kenneth G. Witte, Mark D. Agostino, Daniel S. Goldberger
  • Publication number: 20030040683
    Abstract: A device and method for selecting and stabilizing proper sites for the measurement of the concentration of an analyte, for example glucose, within the tissue of a subject or patient are disclosed. One embodiment of the device immobilizes the subject's forearm and finger, thereby stabilizing measurement sites thereon for exposure to a noninvasive monitor which captures analyte concentration data within the subject's skin. The method involves the choice of a location on the subject's body at which to take the analyte measurement, preferably based on the amount of time that has elapsed since the last time the subject ate.
    Type: Application
    Filed: July 3, 2002
    Publication date: February 27, 2003
    Inventors: Peter Rule, James R. Braig, Daniel S. Goldberger, Julian M. Cortella, Heidi M. Smith, Roger O. Herrera, Kenneth G. Witte, Philip C. Hartstein, Mark D. Agostino