Patents by Inventor Kenneth Hermann

Kenneth Hermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220273953
    Abstract: A compliance voltage management algorithm is disclosed for managing the compliance voltage, VH, that powers the DAC circuitry in a stimulator device. A user can use a user interface associated with an external programming device to define a time-varying stimulation waveform to be programmed into the stimulator device. The algorithm analyzes the prescribed waveform and determines a number of groups of pulses that will be treated similarly from a VH management standpoint. Optimal compliance voltages are determined for each group, as are the rise and fall rates at which VH is able to change at transitions between groups. These rise or fall rates in VH are then used to set when the compliance voltage should increase or decrease. For example, the algorithm will automatically set VH to start rising in advance of a transition so that it is at the proper higher value when the transition occurs.
    Type: Application
    Filed: September 2, 2020
    Publication date: September 1, 2022
    Inventors: G. Karl Steinke, Adam T. Featherstone, Mary Kotchevar, Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann, Chirag Shah
  • Publication number: 20220193394
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 11273303
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: March 15, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Publication number: 20200101277
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 10525252
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Publication number: 20180071512
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann