Patents by Inventor Kenneth I. Schultz

Kenneth I. Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9768785
    Abstract: Digital focal plane arrays (DFPAs) with multiple counters per unit cell can be used to convert analog signals to digital data and to filter the digital data. Exemplary DFPAs include two-dimensional arrays of unit cells, where each unit cell is coupled to a corresponding photodetector in a photodetector array. Each unit cell converts photocurrent from its photodetector to a digital pulse train that is coupled to multiple counters in the unit cell. Each counter in each unit cell can be independently controlled to filter the pulse train by counting up or down and/or by transferring data as desired. For example, a unit cell may perform in-phase/quadrature filtering of homodyne- or heterodyne-detected photocurrent with two counters: a first counter toggled between increment and decrement modes with an in-phase signal and a second counter toggled between increment and decrement modes with a quadrature signal.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: September 19, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Kenneth I. Schultz, Brian Tyrrell, Michael W. Kelly, Curtis B. Colonero, Lawrence M. Candell, Daniel Mooney
  • Publication number: 20150381183
    Abstract: Digital focal plane arrays (DFPAs) with multiple counters per unit cell can be used to convert analog signals to digital data and to filter the digital data. Exemplary DFPAs include two-dimensional arrays of unit cells, where each unit cell is coupled to a corresponding photodetector in a photodetector array. Each unit cell converts photocurrent from its photodetector to a digital pulse train that is coupled to multiple counters in the unit cell. Each counter in each unit cell can be independently controlled to filter the pulse train by counting up or down and/or by transferring data as desired. For example, a unit cell may perform in-phase/quadrature filtering of homodyne- or heterodyne-detected photocurrent with two counters: a first counter toggled between increment and decrement modes with an in-phase signal and a second counter toggled between increment and decrement modes with a quadrature signal.
    Type: Application
    Filed: September 10, 2015
    Publication date: December 31, 2015
    Inventors: Kenneth I. SCHULTZ, Brian M. TYRRELL, Michael W. KELLY, Curtis B. COLONERO, Lawrence M. CANDELL, Daniel MOONEY
  • Patent number: 9159446
    Abstract: Digital focal plane arrays (DFPAs) with multiple counters per unit cell can be used to convert analog signals to digital data and to filter the digital data. Exemplary DFPAs include two-dimensional arrays of unit cells, where each unit cell is coupled to a corresponding photodetector in a photodetector array. Each unit cell converts photocurrent from its photodetector to a digital pulse train that is coupled to multiple counters in the unit cell. Each counter in each unit cell can be independently controlled to filter the pulse train by counting up or down and/or by transferring data as desired. For example, a unit cell may perform in-phase/quadrature filtering of homodyne- or heterodyne-detected photocurrent with two counters: a first counter toggled between increment and decrement modes with an in-phase signal and a second counter toggled between increment and decrement modes with a quadrature signal.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 13, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Kenneth I. Schultz, Brian Tyrrell, Michael W. Kelly, Curtis Colonero, Lawrence M. Candell, Daniel Mooney
  • Publication number: 20140321600
    Abstract: Digital focal plane arrays (DFPAs) with multiple counters per unit cell can be used to convert analog signals to digital data and to filter the digital data. Exemplary DFPAs include two-dimensional arrays of unit cells, where each unit cell is coupled to a corresponding photodetector in a photodetector array. Each unit cell converts photocurrent from its photodetector to a digital pulse train that is coupled to multiple counters in the unit cell. Each counter in each unit cell can be independently controlled to filter the pulse train by counting up or down and/or by transferring data as desired. For example, a unit cell may perform in-phase/quadrature filtering of homodyne- or heterodyne-detected photocurrent with two counters: a first counter toggled between increment and decrement modes with an in-phase signal and a second counter toggled between increment and decrement modes with a quadrature signal.
    Type: Application
    Filed: November 6, 2013
    Publication date: October 30, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: KENNETH I. SCHULTZ, BRIAN TYRRELL, MICHAEL W. KELLY, CURTIS COLONERO, LAWRENCE M. CANDELL, DANIEL MOONEY
  • Patent number: 8605853
    Abstract: Digital focal plane arrays (DFPAs) with multiple counters per unit cell can be used to convert analog signals to digital data and to filter the digital data. Exemplary DFPAs include two-dimensional arrays of unit cells, where each unit cell is coupled to a corresponding photodetector in a photodetector array. Each unit cell converts photocurrent from its photodetector to a digital pulse train that is coupled to multiple counters in the unit cell. Each counter in each unit cell can be independently controlled to filter the pulse train by counting up or down and/or by transferring data as desired. For example, a unit cell may perform in-phase/quadrature filtering of homodyne- or heterodyne-detected photocurrent with two counters: a first counter toggled between increment and decrement modes with an in-phase signal and a second counter toggled between increment and decrement modes with a quadrature signal.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Kenneth I. Schultz, Brian Tyrrell, Michael W. Kelly, Curtis Colonero, Lawrence M. Candell, Daniel Mooney
  • Publication number: 20130003911
    Abstract: Digital focal plane arrays (DFPAs) with multiple counters per unit cell can be used to convert analog signals to digital data and to filter the digital data. Exemplary DFPAs include two-dimensional arrays of unit cells, where each unit cell is coupled to a corresponding photodetector in a photodetector array. Each unit cell converts photocurrent from its photodetector to a digital pulse train that is coupled to multiple counters in the unit cell. Each counter in each unit cell can be independently controlled to filter the pulse train by counting up or down and/or by transferring data as desired. For example, a unit cell may perform in-phase/quadrature filtering of homodyne- or heterodyne-detected photocurrent with two counters: a first counter toggled between increment and decrement modes with an in-phase signal and a second counter toggled between increment and decrement modes with a quadrature signal.
    Type: Application
    Filed: September 8, 2011
    Publication date: January 3, 2013
    Inventors: Kenneth I. Schultz, Brian Tyrrell, Michael W. Kelly, Curtis Colonero, Lawrence M. Candell, Daniel Mooney
  • Patent number: 5447159
    Abstract: A system for optically imaging a specimen is provided, which system amplitude modulates an optical signal with a longer wavelength signal, and in particular a signal having a wavelength which is much longer than any dispersive phase shift in the sample. The modulated optical signal is passed through the specimen. Scattered radiation in the optical output from the sample is filtered out and the resulting optical signal is detected and processed to obtain amplitude/absorption and phase/dispersion information, which information may be used in imaging. Optical signals at different frequencies may be passed through the same sample of the specimen to obtain additional information.
    Type: Grant
    Filed: February 3, 1993
    Date of Patent: September 5, 1995
    Assignee: Massachusetts Institute of Technology
    Inventor: Kenneth I. Schultz