Patents by Inventor Kenneth J. Michlitsch

Kenneth J. Michlitsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8118833
    Abstract: Apparatus is provided for sealing a puncture within a vessel or tissue to provide hemostasis, comprising a first disk coupled to either a second disk or a spring, and sealingly engaged to the vessel or tissue surrounding the puncture. At least the first disk is preferably configured to substantially conform to the profile of the vessel or tissue when deployed. In one embodiment, the disks may be released from engagement with the vessel or tissue to reposition the disks after deployment.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: February 21, 2012
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Gerd Seibold, Kenneth J. Michlitsch, Randolf Von Oepen, Bodo Quint, Ib Erling Joergensen, Stevan Nielsen, Tommy Conzelmann
  • Patent number: 8119335
    Abstract: The present invention provides methods and apparatus for selectively patterning surfaces using radical species generated with a photocatalyst. The photocatalyst may comprise a photocatalytic semiconductor or a photosensitizer. The radical species are brought into contact with an oxidizable coating disposed on the surface, thereby locally oxidizing and selectively patterning the surface. The photocatalyst is preferably disposed on a delivery device, such as a stamp, mask, or scanning probe, that is brought into close proximity or contact with the coated surface. The photocatalyst is then excited in a manner capable of generating radical species, for example, oxygen-containing radical species, in appropriate media. It is expected that these radical species will be transferred to the coated surface along a substantially shortest distance path, thereby locally oxidizing and patterning the surface.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 21, 2012
    Inventors: Jane P. Bearinger, Jeffrey A. Hubbell, Kenneth J. Michlitsch
  • Patent number: 8114125
    Abstract: Apparatus is provided for sealing a puncture within a vessel or tissue to provide hemostasis, comprising a first disk coupled to either a second disk or a spring, and sealingly engaged to the vessel or tissue surrounding the puncture. At least the first disk is preferably configured to substantially conform to the profile of the vessel or tissue when deployed. In one embodiment, the disks may be released from engagement with the vessel or tissue to reposition the disks after deployment.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 14, 2012
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Gerd Seibold, Kenneth J. Michlitsch, Randolf Von Oepen, Bodo Quint, Ib Erling Joergensen, Stevan Nielsen, Tommy Conzelmann
  • Patent number: 8109984
    Abstract: A device for treatment of mitral annulus dilation is disclosed, wherein the device comprises two states. In a first of these states the device is insertable into the coronary sinus and has a shape of the coronary sinus. When positioned in the coronary sinus, the device is transferable to the second state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus and the radius of curvature as well as the circumference of the mitral annulus is reduced.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: February 7, 2012
    Assignee: Edwards Lifesciences AG
    Inventors: Jan Otto Solem, Per-Ola Kimblad, Randolf von Oepen, Bodo Quint, Gerd Seibold, Kenneth J. Michlitsch, Suk-Woo Ha, Karl-Ludwig Eckert, Ib Joergensen, Stevan Nielsen
  • Publication number: 20120027872
    Abstract: Apparatus is provided for sealing a vascular puncture by causing a reduction in the circumference of the puncture tract through delivery of a closure agent into tissue surrounding the puncture tract. A resultant inflammatory response and volumetric increase cause the tissue to swell into the puncture tract, thereby sealing it.
    Type: Application
    Filed: June 30, 2011
    Publication date: February 2, 2012
    Applicant: ABBOTT LABORATORIES VASCULAR ENTERPRISES, LTD.
    Inventors: Stevan Nielsen, Bodo Quint, Randolf Von Oepen, Kenneth J. Michlitsch, Gerd Seibold, Tommy Conzelmann, Ib Erling Joergensen
  • Patent number: 8075616
    Abstract: A device for reshaping a cardiac valve (26), which is elongate and has such dimensions as to be insertable into a cardiac vessel (24). The device has two states, in a first state (K) of which the device has a shape that is adaptable to the shape of the vessel (24), and to the second state (k?) of which the device is transferable from said first state (K). Further, the device comprises a fixing means (22,23;22a,23a) for fixing the ends of the device within the vessel (24), when the device is first positioned therein, a shape-changing member (20;20a) for transferring the device to the second state (K?) by reshaping it, and a delay means (21;21a) for delaying said reshaping until the fixing of the ends of the device has been reinforced by keeping said device in said first state (K) until the delay means (21;21a) is resorbed.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 13, 2011
    Assignee: Edwards Lifesciences AG
    Inventors: Jan Otto Solem, Per Ola Kimblad, Randolf von Oepen, Bodo Quint, Gerd Seibold, Kenneth J. Michlitsch, Suk-Woo Ha, Karl-Ludwig Eckert, Ib Joergensen, Stevan Nielsen
  • Publication number: 20110264011
    Abstract: Multi-directional deflectable catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: August 30, 2010
    Publication date: October 27, 2011
    Applicant: Ardian, Inc.
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai, Kenneth J. Michlitsch, Mark S. Leung
  • Publication number: 20110264075
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: May 28, 2010
    Publication date: October 27, 2011
    Applicant: Ardian, Inc.
    Inventors: Mark S. Leung, Benjamin J. Clark, Kenneth J. Michlitsch, Erik Thai, Andrew Wu, Denise Zarins
  • Publication number: 20110200171
    Abstract: The present disclosure describes methods and apparatus for renal neuromodulation via stereotactic radiotherapy for the treatment of hypertension, heart failure, chronic kidney disease, diabetes, insulin resistance, metabolic disorder or other ailments. Renal neuromodulation may be achieved by locating renal nerves and then utilizing stereotactic radiotherapy to expose the renal nerves to a radiation dose sufficient to reduce neural activity. A neural location element may be provided for locating target renal nerves, and a stereotactic radiotherapy system may be provided for exposing the located renal nerves to a radiation dose sufficient to reduce the neural activity, with reduced or minimized radiation exposure in adjacent tissue. Renal nerves may be located and targeted at the level of the ganglion and/or at postganglionic positions, as well as at pre-ganglionic positions.
    Type: Application
    Filed: January 19, 2011
    Publication date: August 18, 2011
    Applicant: Ardian, Inc.
    Inventors: Robert J. Beetel, Neil C. Barman, Benjamin J. Clark, Paul Friedrichs, Kenneth J. Michlitsch, Karun D. Naga, Andrew Wu, Denise Zarins
  • Publication number: 20110190772
    Abstract: A device for modifying tissue in a spine may include: a shah having a proximal portion and a distal portion, the distal portion having dimensions which allow h to be passed into an epidural space of the spine and between target and non-target tissues at least one distal force application member extending from the distal portion of the shall and configured to facilitate application of at least one of anchoring force and tensioning force to the shaft; at least one movable tissue modifying member coupled with the shaft at or near its distal portion; at least one drive member coupled with the at least one tissue modifying member to activate the at least one tissue modifying member; and at least one power transmission member coupled with the at least one drive member to deliver power to the at least one drive member.
    Type: Application
    Filed: April 1, 2011
    Publication date: August 4, 2011
    Inventors: Vahid Saadat, Jeffery L. Bleich, Kenneth J. Michlitsch, John E. Ashley
  • Patent number: 7972358
    Abstract: Apparatus is provided for sealing a vascular puncture by causing a reduction in the circumference of the puncture tract through delivery of a closure agent into tissue surrounding the puncture tract. A resultant inflammatory response and volumetric increase cause the tissue to swell into the puncture tract, thereby sealing it.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: July 5, 2011
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Stevan Nielsen, Bodo Quint, Randolf Von Oepen, Kenneth J. Michlitsch, Gerd Seibold, Tommy Conzelmann, Ib Erling Joergensen
  • Patent number: 7955340
    Abstract: Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: June 7, 2011
    Assignee: USGI Medical, Inc.
    Inventors: Kenneth J. Michlitsch, Vahid C. Saadat, Richard C. Ewers, Chris Rothe, Rodney Brenneman, Cang C. Lam, Eugene C. Chen
  • Publication number: 20100325008
    Abstract: Methods, including methods conducted with a computer system and/or over a telecommunications network, are provided for transforming an auctioned item of unknown value and buyer into an auctioned item of known value and buyer. The methods comprise sealed bid, second-best price auctions that diminish the effects of information asymmetry while aligning the interests of buyers and sellers by reducing common auction risks of the winner's curse, buyer's remorse, bid shading, shill bidding, bid sniping, and/or collusion. Bidders submit sealed bids for the auctioned item. At a successful auction's conclusion, a highest bidder is established as the item's buyer and a second-best price is established as the value. This second-best price is the second highest sealed bid obtained, or a reserve price that the highest bidder accepts as the value for the auctioned item when the highest sealed bid is the only sealed bid at least equal to the reserve price.
    Type: Application
    Filed: June 14, 2010
    Publication date: December 23, 2010
    Inventors: Kenneth J. Michlitsch, Matthew P. Michlitsch
  • Publication number: 20100305608
    Abstract: The apparatus is provided for sealing a vascular puncture tract by forming the autologous plug within the puncture tract, and extruding that plug into the puncture tract. The apparatus of the present invention forms an autologous blood plug by drawing blood into the apparatus from a vessel, mixing a blood congealing agent with the drawn blood, and ejecting a plug formed from the clotted blood within the puncture tract. Also provided are various closure elements to isolate the drawn blood from the vessel during mixture with the blood congealing agent, and to facilitate placement of the apparatus relative to the vessel.
    Type: Application
    Filed: August 9, 2010
    Publication date: December 2, 2010
    Applicant: ABBOTT LABORATORIES VASCULAR ENTERPRISES LIMITED
    Inventor: Kenneth J. Michlitsch
  • Publication number: 20100249773
    Abstract: The present disclosure comprises handle assemblies for intravascular treatment devices. In one embodiment, a handle assembly comprises an actuator for deflecting a distal region of an intravascular treatment device. In one embodiment, a handle assembly comprises a rotator for rotating an intravascular treatment device independently of the handle assembly. In one embodiment, a handle assembly comprises a rotation limiting element for limiting independent rotation of an intravascular treatment device relative to the handle assembly. Methods and systems for intravascular delivery, deflection and placement of an intravascular treatment device via a handle assembly of the present invention are also provided.
    Type: Application
    Filed: April 13, 2010
    Publication date: September 30, 2010
    Applicant: Ardian, Inc.
    Inventors: Benjamin J. Clark, William R. George, Kenneth J. Michlitsch, John Paul Sam, Erik Thai, Andrew Wu
  • Patent number: 7780725
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an expandable anchor configured for endovascular delivery to a vicinity of the patient's heart valve. In some embodiments, the replacement valve is adapted to wrap about the anchor, for example, by everting during endovascular deployment. In some embodiments, the replacement valve is not connected to expandable portions of the anchor. In some embodiments, the anchor is configured for active foreshortening during endovascular deployment. In some embodiments, the anchor includes expandable lip and skirt regions for engaging the patient's heart valve during deployment. In some embodiments, the anchor comprises a braid fabricated from a single strand of wire. In some embodiments, the apparatus includes a lock configured to maintain anchor expansion. The invention also includes methods for endovascularly replacing a patient's heart valve.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: August 24, 2010
    Assignee: Sadra Medical, Inc.
    Inventors: Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Amr Salahieh, Dwight P. Morejohn, Kenneth J. Michlitsch
  • Patent number: 7771454
    Abstract: Apparatus (10) is provided for sealing a vascular puncture tract by forming the autologous plug within the puncture tract, and extruding that plug into the puncture tract. The apparatus of the present invention forms an autologous blood plug by drawing blood into the apparatus from a vessel, mixing a blood congealing agent with the drawn blood, and ejecting a plug formed from the clotted blood within the puncture tract. Also provided are various closure elements (22) to isolate the drawn blood from the vessel during mixture with the blood congealing agent, and to facilitate placement of the apparatus relative to the vessel.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: August 10, 2010
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventor: Kenneth J. Michlitsch
  • Patent number: 7744613
    Abstract: Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: June 29, 2010
    Assignee: USGI Medical, Inc.
    Inventors: Richard C. Ewers, Vahid Saadat, Kenneth J. Michlitsch, Chris A. Rothe, Rodney A. Brenneman, Cang C. Lam, Eugene G. Chen
  • Publication number: 20100137860
    Abstract: Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 3, 2010
    Applicant: Ardian, Inc.
    Inventors: Denise Demarais, Hanson Gifford, III, Mark Deem, Nicolas Zadno, Benjamin J. Clark, Andrew Wu, Kenneth J. Michlitsch
  • Patent number: 7704264
    Abstract: Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: April 27, 2010
    Assignee: USGI Medical, Inc.
    Inventors: Richard C. Ewers, Vahid C. Saadat, Kenneth J. Michlitsch, Chris Rothe, Rodney Brenneman, Cang C. Lam, Eugene C. Chen