Patents by Inventor Kenneth J Shoemaker

Kenneth J Shoemaker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240311220
    Abstract: Disclosed herein is a technique for mitigating errors tied to software applications. According to some embodiments, the technique can be implemented by a server device, and include the steps of (1) identifying at least one error associated with a user of a software application, (2) identifying at least one client device associated with the user and on which the software application is installed, and (3) providing, to the at least one client device, an indication of the at least one error to cause the software application to, in conjunction with being loaded and/or displayed on the at least one client device: display a user interface that includes information derived from the indication, wherein the user interface is sandboxed from the software application in a manner that prevents the software application from observing activity that occurs within the user interface.
    Type: Application
    Filed: September 30, 2023
    Publication date: September 19, 2024
    Inventors: Madhusudan RAO, Kenneth I. COHEN, Nora J. SHOEMAKER, Victoria L. SHURMAN
  • Patent number: 10724491
    Abstract: An electric starter system is used with an engine. The starter system may include a solenoid device coupled to a pinion gear, a brushless starter motor connectable to the engine via the pinion gear during a requested engine start event, and a controller. In response to the start event, when the engine speed is less than a threshold speed, the controller delivers a control current to the solenoid device at a peak current level sufficient for translating the pinion gear into contact with the flywheel. The control current is reduced to a holding current level less than the peak current level after the pinion gear is engaged with the flywheel. Motor torque is commanded from the starter motor, through the pinion gear, and to the flywheel while maintaining the holding current level, and held for a duration sufficient for starting the engine.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: July 28, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Kenneth J. Shoemaker, Chunhao J. Lee, Lei Hao, Thomas W. Nehl, Suresh Gopalakrishnan
  • Publication number: 20190338744
    Abstract: An electric starter system is used with an engine. The starter system may include a solenoid device coupled to a pinion gear, a brushless starter motor connectable to the engine via the pinion gear during a requested engine start event, and a controller. In response to the start event, when the engine speed is less than a threshold speed, the controller delivers a control current to the solenoid device at a peak current level sufficient for translating the pinion gear into contact with the flywheel. The control current is reduced to a holding current level less than the peak current level after the pinion gear is engaged with the flywheel. Motor torque is commanded from the starter motor, through the pinion gear, and to the flywheel while maintaining the holding current level, and held for a duration sufficient for starting the engine.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Kenneth J. Shoemaker, Chunhao J. Lee, Lei Hao, Thomas W. Nehl, Suresh Gopalakrishnan
  • Patent number: 10328841
    Abstract: Methods and systems for receiving, by a destination device at which a securement-monitoring application is operating, from a securement sensor device, a securement-condition communication indicating a condition of a securement remote to the destination device. Operations also include determining, by the destination device using the securement-monitoring application, an action to take responsive to the securement-condition communication, such as notifying a user of an undesired condition at the securement. The operations further include initiating the action determined.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: June 25, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anil Singh Bika, Nathan F. Thompson, Dorel M. Sala, Kenneth J. Shoemaker, Norman J. Weigert
  • Patent number: 10189469
    Abstract: A method of controlling a powertrain of a vehicle includes opening and/or closing one or more of a first switching device, a second switching device, a third switching device, and engaging and/or disengaging at least one of a pair of actuators for a starter mechanism or a motor/generator clutch. Many different control modes are provided for the powertrain by changing the operation of a motor-generator between a motor or a generator, and changing the electrical connections between a first energy storage device, a second energy storage device, an auxiliary electric system, the starter mechanism, and the motor-generator.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: January 29, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Venkata Prasad Atluri, Suresh Gopalakrishnan, Michael G. Reynolds, Chandra S. Namuduri, Kenneth J. Shoemaker, David W. Walters
  • Patent number: 9926146
    Abstract: A magnetodynamic apparatus for separating conductive non-ferrous blanks includes at least one magnet positioned adjacent to a stack of the blanks and configured to generate a magnetic field in a first direction with respect to a major surface of an uppermost blank within the stack. The apparatus includes an actuator device for positioning the magnet with respect to the stack during production of an electric current in a second direction along the major surface. The second direction is normal to the first direction such that a magnetic separation force is generated in a third direction normal to the first and second directions. The separation force is sufficient for magnetically separating the uppermost blank from remaining blanks in the stack. The magnets may be rotated on a rotor or held stationary. The electric current may be induced or directly injected into the uppermost blank.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: March 27, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Thomas W. Nehl, James J. Abramczyk, Kenneth J. Shoemaker
  • Patent number: 9914599
    Abstract: Disclosed are electromagnetic apparatuses for separating non-ferrous blanks, methods for making and for using such apparatuses, and automated systems with electromagnetic destacking unit for handling stacks of non-ferrous blanks. Presented is a destacking unit with a magnet placed adjacent a stack of non-ferrous blanks, and two electrical terminals placed in contact with the top blank of the stack. The magnet generates a magnetic field across the surface of the top blank. The terminals pass electrical current through the blank transversely across the top surface. The direction of the electrical current is generally normal to the direction of the magnetic field such that a magnetic separation force sufficient to displace the blank from the stack is generated in a generally vertical direction.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: March 13, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Thomas W. Nehl, James J. Abramczyk, Kenneth J. Shoemaker, Michael J. Karagoulis, James S. Dorenbecker
  • Patent number: 9803608
    Abstract: Method for voltage stabilization during an engine starting event of a vehicle includes receiving, at a switch device module, an active Start_ON signal from a starter solenoid module indicating initiation of the engine starting event. At the switch device module, an auxiliary electrical energy storage device (ESD) is electrically coupled to one or more auxiliary loads within a predetermined delay since the active Start_ON signal was received. A primary ESD and a starter motor are electrically decoupled from the one or more auxiliary loads only after the auxiliary ESD has been electrically coupled to the one or more auxiliary loads. In response to a predetermined condition occurring while the primary ESD and the starter motor are electrically decoupled from the one or more auxiliary loads, the primary ESD and the starter motor are electrically coupled to the one or more auxiliary loads.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: October 31, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Shawn L. Boozer, Michael G. Reynolds, Kenneth J. Shoemaker
  • Patent number: 9694769
    Abstract: Apparatus for voltage stabilization in a vehicle includes a battery distribution module having a load module managing electrical power to one or more auxiliary loads, a first switch coupling a starter motor and an ESD to the load module only when closed, a second switch coupling an auxiliary ESD to the load module only when closed, and a controller integrated with a PC board attached to the first and second switch devices. The controller is configured to control opening and closing of the first and second switches based on at least one of a plurality of signals received by the controller. The primary ESD is electrically coupled a primary fuse terminal of the battery distribution module which electrically couples the primary ESD to a second terminal of the first switch and the starter motor. The auxiliary ESD is electrically coupled to an auxiliary fuse terminal of the battery distribution module which electrically couples a first terminal of the second switch to the auxiliary ESD.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: July 4, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chandra S. Namuduri, Shawn L. Boozer, Kenneth J. Shoemaker, Michael G. Reynolds
  • Publication number: 20170158437
    Abstract: A magnetodynamic apparatus for separating conductive non-ferrous blanks includes at least one magnet positioned adjacent to a stack of the blanks and configured to generate a magnetic field in a first direction with respect to a major surface of an uppermost blank within the stack. The apparatus includes an actuator device for positioning the magnet with respect to the stack during production of an electric current in a second direction along the major surface. The second direction is normal to the first direction such that a magnetic separation force is generated in a third direction normal to the first and second directions. The separation force is sufficient for magnetically separating the uppermost blank from remaining blanks in the stack. The magnets may be rotated on a rotor or held stationary. The electric current may be induced or directly injected into the uppermost blank.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 8, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chandra S. Namuduri, Thomas W. Nehl, James J. Abramczyk, Kenneth J. Shoemaker
  • Publication number: 20170158441
    Abstract: Disclosed are electromagnetic apparatuses for separating non-ferrous blanks, methods for making and for using such apparatuses, and automated systems with electromagnetic destacking unit for handling stacks of non-ferrous blanks. Presented is a destacking unit with a magnet placed adjacent a stack of non-ferrous blanks, and two electrical terminals placed in contact with the top blank of the stack. The magnet generates a magnetic field across the surface of the top blank. The terminals pass electrical current through the blank transversely across the top surface. The direction of the electrical current is generally normal to the direction of the magnetic field such that a magnetic separation force sufficient to displace the blank from the stack is generated in a generally vertical direction.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 8, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chandra S. Namuduri, Thomas W. Nehl, James J. Abramczyk, Kenneth J. Shoemaker, Michael J. Karagoulis, James S. Dorenbecker
  • Publication number: 20170129383
    Abstract: Methods and systems for receiving, by a destination device at which a securement-monitoring application is operating, from a securement sensor device, a securement-condition communication indicating a condition of a securement remote to the destination device. Operations also include determining, by the destination device using the securement-monitoring application, an action to take responsive to the securement-condition communication, such as notifying a user of an undesired condition at the securement. The operations further include initiating the action determined.
    Type: Application
    Filed: July 21, 2016
    Publication date: May 11, 2017
    Inventors: Anil Singh Bika, Nathan F. Thompson, Dorel M. Sala, Kenneth J. Shoemaker, Norman J. Weigert
  • Publication number: 20160272191
    Abstract: A method of controlling a powertrain of a vehicle includes opening and/or closing one or more of a first switching device, a second switching device, a third switching device, and engaging and/or disengaging at least one of a pair of actuators for a starter mechanism or a motor/generator clutch. Many different control modes are provided for the powertrain by changing the operation of a motor-generator between a motor or a generator, and changing the electrical connections between a first energy storage device, a second energy storage device, an auxiliary electric system, the starter mechanism, and the motor-generator.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 22, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Venkata Prasad Atluri, Suresh Gopalakrishnan, Michael G. Reynolds, Chandra S. Namuduri, Kenneth J. Shoemaker, David W. Walters
  • Patent number: 9118210
    Abstract: An electrical system includes a battery for providing electrical power to a starter mechanism and an auxiliary load of a hybrid-electric vehicle. An electric double-layer capacitor (“EDLC”) is electrically connectable to the battery and the auxiliary load. A separation switch is electrically connected between the battery and the EDLC for electrically separating the battery from the EDLC and the auxiliary load. The separation switch is opened in response to the voltage across the battery being less than the voltage across the EDLC.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 25, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chandra S. Namuduri, Michael G. Reynolds, Kenneth J. Shoemaker, Theo L. Moreno, James F. Crawford, Detlev Schäfer, Danny Y. Mui
  • Patent number: 9021793
    Abstract: A vehicle includes an internal combustion engine operatively disposed therein. The engine generates exhaust gases. The vehicle further includes an alternator operatively connected to the engine. The alternator produces DC power. An ultracapacitor is operatively connected to the alternator to receive electrical energy therefrom. The vehicle still further includes an exhaust gas treatment system operatively connected to the engine to receive exhaust gases therefrom. The exhaust gas treatment system includes an electrically heated catalyst (EHC) device electrically connected to the ultracapacitor to selectively heat a catalytic exhaust system component. The ultracapacitor stores energy converted by the alternator from vehicle kinetic energy and releases the stored energy to heat the EHC.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 5, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H. Kim, Eugene V. Gonze, Chandra S. Namuduri, Kenneth J. Shoemaker
  • Publication number: 20140375118
    Abstract: Apparatus for voltage stabilization in a vehicle includes a battery distribution module having a load module managing electrical power to one or more auxiliary loads, a first switch coupling a starter motor and an ESD to the load module only when closed, a second switch coupling an auxiliary ESD to the load module only when closed, and a controller integrated with a PC board attached to the first and second switch devices. The controller is configured to control opening and closing of the first and second switches based on at least one of a plurality of signals received by the controller. The primary ESD is electrically coupled a primary fuse terminal of the battery distribution module which electrically couples the primary ESD to a second terminal of the first switch and the starter motor. The auxiliary ESD is electrically coupled to an auxiliary fuse terminal of the battery distribution module which electrically couples a first terminal of the second switch to the auxiliary ESD.
    Type: Application
    Filed: April 4, 2014
    Publication date: December 25, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: CHANDRA S. NAMUDURI, SHAWN L. BOOZER, KENNETH J. SHOEMAKER, MICHAEL G. REYNOLDS
  • Patent number: 8901934
    Abstract: A circuit that detects if contacts in an HV contactor have been welded or stuck closed. The circuit includes a controller that generates a short duration pulse signal that closes a driver switch and allows current flow through a coil in the HV contactor. The current flow is converted to a voltage by a sensor, where the voltage is received by the controller. The controller uses the voltage, such as by comparing the voltage to a stored representative voltage of the coil current for when the HV contactor is open, to determine whether the HV contactor is closed, and possibly welded or stuck closed, or partially closed. The sensor can be the driver switch or another device, such as a resistor.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: December 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew J. Namou, Chandra S. Namuduri, Kenneth J. Shoemaker
  • Publication number: 20140306523
    Abstract: Method for voltage stabilization during an engine starting event of a vehicle includes receiving, at a switch device module, an active Start_ON signal from a starter solenoid module indicating initiation of the engine starting event. At the switch device module, an auxiliary electrical energy storage device (ESD) is electrically coupled to one or more auxiliary loads within a predetermined delay since the active Start_ON signal was received. A primary ESD and a starter motor are electrically decoupled from the one or more auxiliary loads only after the auxiliary ESD has been electrically coupled to the one or more auxiliary loads. In response to a predetermined condition occurring while the primary ESD and the starter motor are electrically decoupled from the one or more auxiliary loads, the primary ESD and the starter motor are electrically coupled to the one or more auxiliary loads.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 16, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: CHANDRA S. NAMUDURI, SHAWN L. BOOZER, MICHAEL G. REYNOLDS, KENNETH J. SHOEMAKER
  • Publication number: 20140103722
    Abstract: An electrical system includes a battery for providing electrical power to a starter mechanism and an auxiliary load of a hybrid-electric vehicle. An electric double-layer capacitor (“EDLC”) is electrically connectable to the battery and the auxiliary load. A separation switch is electrically connected between the battery and the EDLC for electrically separating the battery from the EDLC and the auxiliary load. The separation switch is opened in response to the voltage across the battery being less than the voltage across the EDLC.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: CHANDRA S. NAMUDURI, MICHAEL G. REYNOLDS, KENNETH J. SHOEMAKER, THEO L. MORENO, JAMES F. CRAWFORD, DETLEV SCHÄFER, DANNY Y. MUI
  • Patent number: 8436571
    Abstract: A linear actuator associated with an actuator system for a device includes a wire cable fabricated from an active material. The linear actuator couples to the device and to the moveable element. The active material induces strain in the linear actuator in response to an activation signal. The linear actuator translates the moveable element relative to the device in response to the induced strain. An activation controller electrically connects to the linear actuator and generates the activation signal. A position feedback sensor monitors a position of the moveable element.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: May 7, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Lei Hao, Chandra S. Namuduri, Kenneth J. Shoemaker, Suresh Gopalakrishnan, Sanjeev M. Naik, Xiujie Gao, Paul W. Alexander, Richard J. Skurkis, Tony J. Deschutter