Patents by Inventor Kenneth Jay Stein

Kenneth Jay Stein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8748252
    Abstract: Methods of fabricating replacement metal gate transistors using bi-layer a hardmask are disclosed. By utilizing a bi-layer hardmask comprised of a first layer of nitride, followed by a second layer of oxide, the topography issues caused by transition regions of gates are mitigated, which simplifies downstream processing steps and improves yield.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, William Cote, Laertis Economikos, Young-Hee Kim, Dae-Gyu Park, Theodorus Eduardus Standaert, Kenneth Jay Stein, YS Suh, Min Yang
  • Publication number: 20140148003
    Abstract: Methods of fabricating replacement metal gate transistors using bi-layer a hardmask are disclosed. By utilizing a bi-layer hardmask comprised of a first layer of nitride, followed by a second layer of oxide, the topography issues caused by transition regions of gates are mitigated, which simplifies downstream processing steps and improves yield.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 29, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Effendi Leobandung, William Cote, Laertis Economikos, Young-Hee Kim, Dae-Gyu Park, Theodorus Eduardus Standaert, Kenneth Jay Stein, YS Suh, Min Yang
  • Patent number: 8159040
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Ephrem G. Gebreselasie, Zhong-Xiang He, Herbert Lei Ho, Deok-kee Kim, Chandrasekharan Kothandaraman, Dan Moy, Robert Mark Rassel, John Matthew Safran, Kenneth Jay Stein, Norman Whitelaw Robson, Ping-Chuan Wang, Hongwen Yan
  • Publication number: 20110129996
    Abstract: A through substrate via includes an annular conductor layer at a periphery of a through substrate aperture, and a plug layer surrounded by the annular conductor layer. A method for fabricating the through substrate via includes forming a blind aperture within a substrate and successively forming and subsequently planarizing within the blind aperture a conformal conductor layer that does not fill the aperture and plug layer that does fill the aperture. The backside of the substrate may then be planarized to expose at least the planarized conformal conductor layer.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 2, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peter James Lindgren, Edmund Juris Sprogis, Anthony Kendall Stamper, Kenneth Jay Stein
  • Patent number: 7898063
    Abstract: A through substrate via includes an annular conductor layer at a periphery of a through substrate aperture, and a plug layer surrounded by the annular conductor layer. A method for fabricating the through substrate via includes forming a blind aperture within a substrate and successively forming and subsequently planarizing within the blind aperture a conformal conductor layer that does not fill the aperture and plug layer that does fill the aperture. The backside of the substrate may then be planarized to expose at least the planarized conformal conductor layer.
    Type: Grant
    Filed: February 16, 2008
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Peter James Lindgren, Edmund Juris Sprogis, Anthony Kendall Stamper, Kenneth Jay Stein
  • Patent number: 7741722
    Abstract: A through-wafer via structure and method for forming the same. The through-wafer via structure includes a wafer having an opening and a top wafer surface. The top wafer surface defines a first reference direction perpendicular to the top wafer surface. The through-wafer via structure further includes a through-wafer via in the opening. The through-wafer via has a shape of a rectangular plate. A height of the through-wafer via in the first reference direction essentially equals a thickness of the wafer in the first reference direction. A length of the through-wafer via in a second reference direction is at least ten times greater than a width of the through-wafer via in a third reference direction. The first, second, and third reference directions are perpendicular to each other.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Paul Stephen Andry, Edmund Juris Sprogis, Kenneth Jay Stein, Timothy Dooling Sullivan, Cornelia Kang-I Tsang, Ping-Chuan Wang, Bucknell C. Webb
  • Publication number: 20090283840
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 19, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Ephrem G. Gebreselasie, Zhong-Xiang He, Herbert Lei Ho, Deok-kee Kim, Chandrasekharan Kothandaraman, Dan Moy, Robert Mark Rassel, John Matthew Safran, Kenneth Jay Stein, Norman Whitelaw Robson, Ping-Chuan Wang, Hongwen Yan
  • Publication number: 20090206488
    Abstract: A through substrate via includes an annular conductor layer at a periphery of a through substrate aperture, and a plug layer surrounded by the annular conductor layer. A method for fabricating the through substrate via includes forming a blind aperture within a substrate and successively forming and subsequently planarizing within the blind aperture a conformal conductor layer that does not fill the aperture and plug layer that does fill the aperture. The backside of the substrate may then be planarized to expose at least the planarized conformal conductor layer.
    Type: Application
    Filed: February 16, 2008
    Publication date: August 20, 2009
    Applicant: International Business Machines Corporation
    Inventors: Peter James Lindgren, Edmund Juris Sprogis, Anthony Kendall Stamper, Kenneth Jay Stein
  • Publication number: 20080274583
    Abstract: A through-wafer via structure and method for forming the same. The through-wafer via structure includes a wafer having an opening and a top wafer surface. The top wafer surface defines a first reference direction perpendicular to the top wafer surface. The through-wafer via structure further includes a through-wafer via in the opening. The through-wafer via has a shape of a rectangular plate. A height of the through-wafer via in the first reference direction essentially equals a thickness of the wafer in the first reference direction. A length of the through-wafer via in a second reference direction is at least ten times greater than a width of the through-wafer via in a third reference direction. The first, second, and third reference directions are perpendicular to each other.
    Type: Application
    Filed: March 23, 2007
    Publication date: November 6, 2008
    Inventors: Paul Stephen Andry, Edmund Juris Sprogis, Kenneth Jay Stein, Timothy Dooling Sullivan, Cornelia Kang-I Tsang, Ping-Chuan Wang, Bucknell C. Webb
  • Patent number: 6927440
    Abstract: An interconnection wiring system incorporating two levels of interconnection wiring separated by a first dielectric, a capacitor formed by a second dielectric, a bottom electrode of the lower interconnection wiring or a via and a top electrode of the upper interconnection wiring or a separate metal layer. The invention overcomes the problem of leakage current and of substrate stray capacitance by positioning the capacitor between two levels of interconnection wiring.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: August 9, 2005
    Assignee: International Business Machines Corporation
    Inventors: Nancy Anne Greco, David Louis Harame, Gary Robert Hueckel, Joseph Thomas Kocis, Dominique Nguyen Ngoc, Kenneth Jay Stein
  • Patent number: 6825075
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: November 30, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Publication number: 20040147089
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 29, 2004
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Patent number: 6756624
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: June 29, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Publication number: 20040077140
    Abstract: A uniformly thick oxide film on a substrate is formed by using an anodization apparatus which deposits a blanket precursor film on a surface of a substrate; provides electrical contact to the precursor film; moves the precursor film into contact with an electrolyte solution such that substantially all electrically conductive surfaces, e.g., pin contacts, the substrate edge and a backside of the substrate are electrically isolated from the electrolyte; ensures that the surface of the precursor film on the substrate is in direct contact with the electrolyte solution; and which applies an anodizing current and/or voltage between the precursor film and a counter electrode so as to compensate for a voltage drop resulting from the presence of the electrolyte.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 22, 2004
    Inventors: Panayotis C. Andricacos, Roy Arthur Carruthers, Stephan Alan Cohen, John Michael Cotte, Lynne M. Gignac, Kenneth Jay Stein, Keith T. Kwietniak, Seshadri Subbanna, Horatio Seymour Wildman, David Earle Seeger, Andrew Herbert Simon
  • Publication number: 20030211698
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Application
    Filed: April 7, 2003
    Publication date: November 13, 2003
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Patent number: 6635527
    Abstract: An interconnection wiring system incorporating two levels of interconnection wiring separated by a first dielectric, a capacitor formed by a second dielectric, a bottom electrode of the lower interconnection wiring or a via and a top electrode of the upper interconnection wiring or a separate metal layer. The invention overcomes the problem of leakage current and of substrate stray capacitance by positioning the capacitor between two levels of interconnection wiring.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: October 21, 2003
    Assignee: International Business Machines Corporation
    Inventors: Nancy Anne Greco, David Louis Harame, Gary Robert Hueckel, Joseph Thomas Kocis, Dominique Nguyen Ngoc, Kenneth Jay Stein
  • Patent number: 6597068
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 22, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Publication number: 20020068431
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Application
    Filed: December 28, 2001
    Publication date: June 6, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Patent number: 6368953
    Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: April 9, 2002
    Assignee: International Business Machines Corporation
    Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
  • Patent number: 5926359
    Abstract: An interconnection wiring system incorporating two levels of interconnection wiring separated by a first dielectric, a capacitor formed by a second dielectric, a bottom electrode of the lower interconnection wiring or a via and a top electrode of the upper interconnection wiring or a separate metal layer. The invention overcomes the problem of leakage current and of substrate stray capacitance by positioning the capacitor between two levels of interconnection wiring.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: July 20, 1999
    Assignee: International Business Machines Corporation
    Inventors: Nancy Anne Greco, David Louis Harame, Gary Robert Hueckel, Joseph Thomas Kocis, Dominique Nguyen Ngoc, Kenneth Jay Stein