Patents by Inventor Kenneth Jay Stein
Kenneth Jay Stein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8748252Abstract: Methods of fabricating replacement metal gate transistors using bi-layer a hardmask are disclosed. By utilizing a bi-layer hardmask comprised of a first layer of nitride, followed by a second layer of oxide, the topography issues caused by transition regions of gates are mitigated, which simplifies downstream processing steps and improves yield.Type: GrantFiled: November 26, 2012Date of Patent: June 10, 2014Assignee: International Business Machines CorporationInventors: Effendi Leobandung, William Cote, Laertis Economikos, Young-Hee Kim, Dae-Gyu Park, Theodorus Eduardus Standaert, Kenneth Jay Stein, YS Suh, Min Yang
-
Publication number: 20140148003Abstract: Methods of fabricating replacement metal gate transistors using bi-layer a hardmask are disclosed. By utilizing a bi-layer hardmask comprised of a first layer of nitride, followed by a second layer of oxide, the topography issues caused by transition regions of gates are mitigated, which simplifies downstream processing steps and improves yield.Type: ApplicationFiled: November 26, 2012Publication date: May 29, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Effendi Leobandung, William Cote, Laertis Economikos, Young-Hee Kim, Dae-Gyu Park, Theodorus Eduardus Standaert, Kenneth Jay Stein, YS Suh, Min Yang
-
Patent number: 8159040Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.Type: GrantFiled: May 13, 2008Date of Patent: April 17, 2012Assignee: International Business Machines CorporationInventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Ephrem G. Gebreselasie, Zhong-Xiang He, Herbert Lei Ho, Deok-kee Kim, Chandrasekharan Kothandaraman, Dan Moy, Robert Mark Rassel, John Matthew Safran, Kenneth Jay Stein, Norman Whitelaw Robson, Ping-Chuan Wang, Hongwen Yan
-
Publication number: 20110129996Abstract: A through substrate via includes an annular conductor layer at a periphery of a through substrate aperture, and a plug layer surrounded by the annular conductor layer. A method for fabricating the through substrate via includes forming a blind aperture within a substrate and successively forming and subsequently planarizing within the blind aperture a conformal conductor layer that does not fill the aperture and plug layer that does fill the aperture. The backside of the substrate may then be planarized to expose at least the planarized conformal conductor layer.Type: ApplicationFiled: February 11, 2011Publication date: June 2, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Peter James Lindgren, Edmund Juris Sprogis, Anthony Kendall Stamper, Kenneth Jay Stein
-
Patent number: 7898063Abstract: A through substrate via includes an annular conductor layer at a periphery of a through substrate aperture, and a plug layer surrounded by the annular conductor layer. A method for fabricating the through substrate via includes forming a blind aperture within a substrate and successively forming and subsequently planarizing within the blind aperture a conformal conductor layer that does not fill the aperture and plug layer that does fill the aperture. The backside of the substrate may then be planarized to expose at least the planarized conformal conductor layer.Type: GrantFiled: February 16, 2008Date of Patent: March 1, 2011Assignee: International Business Machines CorporationInventors: Peter James Lindgren, Edmund Juris Sprogis, Anthony Kendall Stamper, Kenneth Jay Stein
-
Patent number: 7741722Abstract: A through-wafer via structure and method for forming the same. The through-wafer via structure includes a wafer having an opening and a top wafer surface. The top wafer surface defines a first reference direction perpendicular to the top wafer surface. The through-wafer via structure further includes a through-wafer via in the opening. The through-wafer via has a shape of a rectangular plate. A height of the through-wafer via in the first reference direction essentially equals a thickness of the wafer in the first reference direction. A length of the through-wafer via in a second reference direction is at least ten times greater than a width of the through-wafer via in a third reference direction. The first, second, and third reference directions are perpendicular to each other.Type: GrantFiled: March 23, 2007Date of Patent: June 22, 2010Assignee: International Business Machines CorporationInventors: Paul Stephen Andry, Edmund Juris Sprogis, Kenneth Jay Stein, Timothy Dooling Sullivan, Cornelia Kang-I Tsang, Ping-Chuan Wang, Bucknell C. Webb
-
Publication number: 20090283840Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.Type: ApplicationFiled: May 13, 2008Publication date: November 19, 2009Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Ephrem G. Gebreselasie, Zhong-Xiang He, Herbert Lei Ho, Deok-kee Kim, Chandrasekharan Kothandaraman, Dan Moy, Robert Mark Rassel, John Matthew Safran, Kenneth Jay Stein, Norman Whitelaw Robson, Ping-Chuan Wang, Hongwen Yan
-
Publication number: 20090206488Abstract: A through substrate via includes an annular conductor layer at a periphery of a through substrate aperture, and a plug layer surrounded by the annular conductor layer. A method for fabricating the through substrate via includes forming a blind aperture within a substrate and successively forming and subsequently planarizing within the blind aperture a conformal conductor layer that does not fill the aperture and plug layer that does fill the aperture. The backside of the substrate may then be planarized to expose at least the planarized conformal conductor layer.Type: ApplicationFiled: February 16, 2008Publication date: August 20, 2009Applicant: International Business Machines CorporationInventors: Peter James Lindgren, Edmund Juris Sprogis, Anthony Kendall Stamper, Kenneth Jay Stein
-
Publication number: 20080274583Abstract: A through-wafer via structure and method for forming the same. The through-wafer via structure includes a wafer having an opening and a top wafer surface. The top wafer surface defines a first reference direction perpendicular to the top wafer surface. The through-wafer via structure further includes a through-wafer via in the opening. The through-wafer via has a shape of a rectangular plate. A height of the through-wafer via in the first reference direction essentially equals a thickness of the wafer in the first reference direction. A length of the through-wafer via in a second reference direction is at least ten times greater than a width of the through-wafer via in a third reference direction. The first, second, and third reference directions are perpendicular to each other.Type: ApplicationFiled: March 23, 2007Publication date: November 6, 2008Inventors: Paul Stephen Andry, Edmund Juris Sprogis, Kenneth Jay Stein, Timothy Dooling Sullivan, Cornelia Kang-I Tsang, Ping-Chuan Wang, Bucknell C. Webb
-
Patent number: 6927440Abstract: An interconnection wiring system incorporating two levels of interconnection wiring separated by a first dielectric, a capacitor formed by a second dielectric, a bottom electrode of the lower interconnection wiring or a via and a top electrode of the upper interconnection wiring or a separate metal layer. The invention overcomes the problem of leakage current and of substrate stray capacitance by positioning the capacitor between two levels of interconnection wiring.Type: GrantFiled: September 9, 2003Date of Patent: August 9, 2005Assignee: International Business Machines CorporationInventors: Nancy Anne Greco, David Louis Harame, Gary Robert Hueckel, Joseph Thomas Kocis, Dominique Nguyen Ngoc, Kenneth Jay Stein
-
Method of fabricating MIM capacitor with the encapsulated metal structure serving as the lower plate
Patent number: 6825075Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: GrantFiled: January 14, 2004Date of Patent: November 30, 2004Assignee: International Business Machines CorporationInventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant -
Publication number: 20040147089Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: ApplicationFiled: January 14, 2004Publication date: July 29, 2004Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
-
Patent number: 6756624Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: GrantFiled: April 7, 2003Date of Patent: June 29, 2004Assignee: International Business Machines CorporationInventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
-
Publication number: 20040077140Abstract: A uniformly thick oxide film on a substrate is formed by using an anodization apparatus which deposits a blanket precursor film on a surface of a substrate; provides electrical contact to the precursor film; moves the precursor film into contact with an electrolyte solution such that substantially all electrically conductive surfaces, e.g., pin contacts, the substrate edge and a backside of the substrate are electrically isolated from the electrolyte; ensures that the surface of the precursor film on the substrate is in direct contact with the electrolyte solution; and which applies an anodizing current and/or voltage between the precursor film and a counter electrode so as to compensate for a voltage drop resulting from the presence of the electrolyte.Type: ApplicationFiled: October 16, 2002Publication date: April 22, 2004Inventors: Panayotis C. Andricacos, Roy Arthur Carruthers, Stephan Alan Cohen, John Michael Cotte, Lynne M. Gignac, Kenneth Jay Stein, Keith T. Kwietniak, Seshadri Subbanna, Horatio Seymour Wildman, David Earle Seeger, Andrew Herbert Simon
-
Publication number: 20030211698Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: ApplicationFiled: April 7, 2003Publication date: November 13, 2003Inventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
-
Patent number: 6635527Abstract: An interconnection wiring system incorporating two levels of interconnection wiring separated by a first dielectric, a capacitor formed by a second dielectric, a bottom electrode of the lower interconnection wiring or a via and a top electrode of the upper interconnection wiring or a separate metal layer. The invention overcomes the problem of leakage current and of substrate stray capacitance by positioning the capacitor between two levels of interconnection wiring.Type: GrantFiled: May 26, 1999Date of Patent: October 21, 2003Assignee: International Business Machines CorporationInventors: Nancy Anne Greco, David Louis Harame, Gary Robert Hueckel, Joseph Thomas Kocis, Dominique Nguyen Ngoc, Kenneth Jay Stein
-
Patent number: 6597068Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: GrantFiled: December 28, 2001Date of Patent: July 22, 2003Assignee: International Business Machines CorporationInventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
-
Publication number: 20020068431Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: ApplicationFiled: December 28, 2001Publication date: June 6, 2002Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
-
Patent number: 6368953Abstract: A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening.Type: GrantFiled: May 9, 2000Date of Patent: April 9, 2002Assignee: International Business Machines CorporationInventors: Kevin S. Petrarca, Donald Canaperi, Mahadevaiyer Krishnan, Kenneth Jay Stein, Richard P. Volant
-
Patent number: 5926359Abstract: An interconnection wiring system incorporating two levels of interconnection wiring separated by a first dielectric, a capacitor formed by a second dielectric, a bottom electrode of the lower interconnection wiring or a via and a top electrode of the upper interconnection wiring or a separate metal layer. The invention overcomes the problem of leakage current and of substrate stray capacitance by positioning the capacitor between two levels of interconnection wiring.Type: GrantFiled: April 1, 1996Date of Patent: July 20, 1999Assignee: International Business Machines CorporationInventors: Nancy Anne Greco, David Louis Harame, Gary Robert Hueckel, Joseph Thomas Kocis, Dominique Nguyen Ngoc, Kenneth Jay Stein