Patents by Inventor Kenneth John Behr

Kenneth John Behr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337436
    Abstract: Methods and systems are provided for converting an asymmetric sensor response of an exhaust gas sensor to a symmetric response. In one example, a method includes adjusting fuel injection responsive to a modified exhaust oxygen feedback signal from an exhaust gas sensor, where the modified exhaust oxygen feedback signal is modified by transforming an asymmetric response of the exhaust gas sensor to a symmetric response. Further, the method may include adapting parameters of an anticipatory controller of the exhaust gas sensor based on the modified symmetric response.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Gladys G. Galicia, Kenneth John Behr, Zena Yanqing Yee
  • Publication number: 20190136780
    Abstract: Methods and systems are provided for converting an asymmetric sensor response of an exhaust gas sensor to a symmetric response. In one example, a method includes adjusting fuel injection responsive to a modified exhaust oxygen feedback signal from an exhaust gas sensor, where the modified exhaust oxygen feedback signal is modified by transforming an asymmetric response of the exhaust gas sensor to a symmetric response. Further, the method may include adapting parameters of an anticipatory controller of the exhaust gas sensor based on the modified symmetric response.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 9, 2019
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Gladys G. Galicia, Kenneth John Behr, Zena Yanqing Yee
  • Patent number: 10018143
    Abstract: Systems and methods for determining air-fuel error in an engine fueled via direct and port fuel injection. Errors associated with individual fuel injection systems are distinguished from a common error based on trends in the error correction coefficients of the individual fuel injection systems. Adaptive fuel multipliers for each injection system are updated to account for the common error.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 10, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Adithya Pravarun Re Ranga, Gopichandra Surnilla, Joseph Lyle Thomas, Ethan D. Sanborn, Mark Thomas Linenberg, Kenneth John Behr, Yichao Guo
  • Patent number: 10018144
    Abstract: Systems and methods for determining air-fuel error in an engine fueled via direct and port fuel injection. Errors associated with individual fuel injection systems are distinguished from a common error based on trends in the error correction coefficients of the individual fuel injection systems. Adaptive fuel multipliers for each injection system are updated to account for the common error.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 10, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Adithya Pravarun Re Ranga, Gopichandra Surnilla, Joseph Lyle Thomas, Ethan D. Sanborn, Mark Thomas Linenberg, Kenneth John Behr
  • Publication number: 20180051647
    Abstract: Systems and methods for determining air-fuel error in an engine fueled via direct and port fuel injection. Errors associated with individual fuel injection systems are distinguished from a common error based on trends in the error correction coefficients of the individual fuel injection systems. Adaptive fuel multipliers for each injection system are updated to account for the common error.
    Type: Application
    Filed: August 19, 2016
    Publication date: February 22, 2018
    Inventors: Adithya Pravarun Re Ranga, Gopichandra Surnilla, Joseph Lyle Thomas, Ethan D. Sanborn, Mark Thomas Linenberg, Kenneth John Behr
  • Publication number: 20180051646
    Abstract: Systems and methods for determining air-fuel error in an engine fueled via direct and port fuel injection. Errors associated with individual fuel injection systems are distinguished from a common error based on trends in the error correction coefficients of the individual fuel injection systems. Adaptive fuel multipliers for each injection system are updated to account for the common error.
    Type: Application
    Filed: August 19, 2016
    Publication date: February 22, 2018
    Inventors: Adithya Pravarun Re Ranga, Gopichandra Surnilla, Joseph Lyle Thomas, Ethan D. Sanborn, Mark Thomas Linenberg, Kenneth John Behr, Yichao Guo
  • Patent number: 9863353
    Abstract: Methods and systems are provided for estimating an exhaust air/fuel ratio based on outputs from an exhaust oxygen sensor. In one example, a method may include adjusting engine operation based on an air-fuel ratio estimated based on an output of the exhaust oxygen sensor and a learned correction factor. For example, the oxygen sensor may operate in a variable voltage mode in which a reference voltage of the oxygen sensor may be adjusted between a lower first voltage and a higher second voltage, and the learned correction factor is based on the second voltage.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: January 9, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Daniel A. Makled, Gopichandra Surnilla, Richard E. Soltis, Kenneth John Behr
  • Publication number: 20170191436
    Abstract: Methods and systems are provided for estimating an exhaust air/fuel ratio based on outputs from an exhaust oxygen sensor. In one example, a method may include adjusting engine operation based on an air-fuel ratio estimated based on an output of the exhaust oxygen sensor and a learned correction factor. For example, the oxygen sensor may operate in a variable voltage mode in which a reference voltage of the oxygen sensor may be adjusted between a lower first voltage and a higher second voltage, and the learned correction factor is based on the second voltage.
    Type: Application
    Filed: March 17, 2017
    Publication date: July 6, 2017
    Inventors: Daniel A. Makled, Gopichandra Surnilla, Richard E. Soltis, Kenneth John Behr
  • Patent number: 9677491
    Abstract: Methods and systems are provided reusing processed sensor data to identify multiple types of sensor degradation. In one example, a central peak of a distribution, such as a generalized extreme value distribution, of sensor readings is re-used to identify asymmetric sensor degradation and stuck in-range sensor degradation.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: June 13, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Mark Thomas Linenberg, Gladys G. Soriano, Kenneth John Behr
  • Patent number: 9611799
    Abstract: Methods and systems are provided for estimating an exhaust air/fuel ratio based on outputs from an exhaust oxygen sensor. In one example, a method may include adjusting engine operation based on an air-fuel ratio estimated based on an output of the exhaust oxygen sensor and a learned correction factor. For example, the oxygen sensor may operate in a variable voltage mode in which a reference voltage of the oxygen sensor may be adjusted between a lower first voltage and a higher second voltage, and the learned correction factor is based on the second voltage.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: April 4, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Daniel A. Makled, Gopichandra Surnilla, Richard E. Soltis, Kenneth John Behr
  • Patent number: 9447744
    Abstract: Methods and systems are described for evaluating presence of fuel shifts in an engine. In one example, a method comprises indicating a fuel shift based on a time delay of an exhaust gas sensor during an entry into and an exit out of deceleration fuel shut off (DFSO).
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: September 20, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Michael James Uhrich, Michael Casedy, Kenneth John Behr
  • Publication number: 20160245204
    Abstract: Methods and systems are provided for estimating an exhaust air/fuel ratio based on outputs from an exhaust oxygen sensor. In one example, a method may include adjusting engine operation based on an air-fuel ratio estimated based on an output of the exhaust oxygen sensor and a learned correction factor. For example, the oxygen sensor may operate in a variable voltage mode in which a reference voltage of the oxygen sensor may be adjusted between a lower first voltage and a higher second voltage, and the learned correction factor is based on the second voltage.
    Type: Application
    Filed: February 19, 2015
    Publication date: August 25, 2016
    Inventors: Daniel A. Makled, Gopichandra Surnilla, Richard E. Soltis, Kenneth John Behr
  • Publication number: 20160160723
    Abstract: Methods and systems are provided for injecting water to reduce an ash load on a PF. In one example, a method may include injecting water from a reservoir to between a PF and a three-way catalyst in order to reduce an ash load.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 9, 2016
    Inventors: Joseph Lyle Thomas, Michiel J. Van Nieuwstadt, Kenneth John Behr, Mira Bumbaroska
  • Publication number: 20160017827
    Abstract: Methods and systems are described for evaluating presence of fuel shifts in an engine. In one example, a method comprises indicating a fuel shift based on a time delay of an exhaust gas sensor during an entry into and an exit out of deceleration fuel shut off (DFSO).
    Type: Application
    Filed: July 17, 2014
    Publication date: January 21, 2016
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Michael James Uhrich, Michael Casedy, Kenneth John Behr
  • Publication number: 20150046063
    Abstract: Methods and systems are provided reusing processed sensor data to identify multiple types of sensor degradation. In one example, a central peak of a distribution, such as a generalized extreme value distribution, of sensor readings is re-used to identify asymmetric sensor degradation and stuck in-range sensor degradation.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Mark Thomas Linenberg, Gladys G. Soriano, Kenneth John Behr
  • Patent number: 8731806
    Abstract: Various systems and methods are described for an exhaust gas sensor coupled to an exhaust system of an engine. One example method comprises, during selected engine fueling conditions, alternating between applying different voltages to the sensor; and identifying an amount of alcohol in fuel injected to the engine based on sensor outputs at the different voltages.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 20, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Richard E. Soltis, Gopichandra Surnilla, Carolyn Parks Hubbard, Kenneth John Behr, Timothy Joseph Clark
  • Publication number: 20130311073
    Abstract: Various systems and methods are described for an exhaust gas sensor coupled to an exhaust system of an engine. One example method comprises, during selected engine fueling conditions, alternating between applying different voltages to the sensor; and identifying an amount of alcohol in fuel injected to the engine based on sensor outputs at the different voltages.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: Ford Global Technologies, LLC
    Inventors: Richard E. Soltis, Gopichandra Surnilla, Carolyn Parks Hubbard, Kenneth John Behr, Timothy Joseph Clark
  • Patent number: 8495996
    Abstract: Various systems and methods are described for an exhaust gas sensor coupled to an exhaust system of an engine. One example method comprises, during selected engine fueling conditions, alternating between applying different voltages to the sensor; and identifying an amount of alcohol in fuel injected to the engine based on sensor outputs at the different voltages.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: July 30, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Richard E. Soltis, Gopichandra Surnilla, Carolyn Parks Hubbard, Kenneth John Behr, Timothy Joseph Clark
  • Publication number: 20110132342
    Abstract: Various systems and methods are described for an exhaust gas sensor coupled to an exhaust system of an engine. One example method comprises, during selected engine fueling conditions, alternating between applying different voltages to the sensor; and identifying an amount of alcohol in fuel injected to the engine based on sensor outputs at the different voltages.
    Type: Application
    Filed: May 17, 2010
    Publication date: June 9, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Richard E. Soltis, Gopichandra Surnilla, Carolyn Parks Hubbard, Kenneth John Behr, Timothy Joseph Clark
  • Patent number: 7481915
    Abstract: A system for determining a temperature of exhaust gases from an engine is provided. The system includes an exhaust gas sensor having an electric heating coil. The sensor communicates with exhaust gases from the engine. The system further includes an electrical circuit for generating a signal indicative of the resistance of the heating coil when the coil is not energized. Finally, the system includes a controller receiving the signal and calculating the temperature of the exhaust gases based on the signal.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 27, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher K. Davey, David Robert Nader, Kenneth John Behr, Michael Igor Kluzner, Michael James Uhrich, Robert Joseph Jerger