Patents by Inventor Kenneth L. Starks

Kenneth L. Starks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10262833
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 16, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Publication number: 20180090297
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 29, 2018
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Patent number: 9859098
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: January 2, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Publication number: 20170178857
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb