Patents by Inventor Kenneth Lloyd Riley

Kenneth Lloyd Riley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7586017
    Abstract: The use of a controlled amount of water in a hydrogenation stage of the oxo process for the production of alcohols which uses at least two reactors in series improves the efficiency of the hydrogenation reaction and catalyst life as does a reduction in the amount of sulphur, chlorine and hydroformylation catalyst residues in the feed to hydrogenation.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 8, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Eddy Theophyle Andrea Van Driessche, Philippe Louis Buess, Raphael Frans Caers, Arie Van Vliet, Ramzi Yanni Saleh, Jose Manuel Vargas, Kenneth Lloyd Riley, Magdiel Agosto
  • Patent number: 7513989
    Abstract: The invention relates to a hydrocracking process for hydrocracking petroleum and chemical feedstocks using bulk Group VIII/VIB catalysts. Preferred catalysts include those comprised of Ni—Mo—W.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 7, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart Leon Soled, Kenneth Lloyd Riley, Gary P. Schleicher, Richard A. Demmin, Darlene Schuette, legal representative, Ian Alfred Cody, William L. Schuette
  • Patent number: 7288182
    Abstract: A process for hydroprocessing petroleum and chemical feedstocks by use of a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least one, preferably two Group VIB metal wherein the ratio of Group VIB metal to Group VIII metal is from about 10:1 to 1:10.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: October 30, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart Leon Soled, Sabato Miseo, Roman Krycak, Hilda B. Vroman, Teh Chung Ho, Kenneth Lloyd Riley
  • Patent number: 7232515
    Abstract: A process for hydrofining a lubricating oil feedstock comprising contacting the feedstock with a hydrofining catalyst in a hydrofining zone under hydrofining conditions wherein the hydrofining catalyst comprises a bulk metal catalyst containing non-noble Group VIII metal molybdate in which at least a portion but less than all of the molybdenum is replaced by tungsten.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: June 19, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Richard Alan Demmin, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6863803
    Abstract: A two stage hydrodesulfurizing process for producing low sulfur distillates. A distillate boiling range feedstock containing in excess of about 3,000 wppm sulfur is hydrodesulfurized in a first hydrodesulfurizing stage containing one or more reaction zones in the presence of hydrogen and a hydrodesulfurizing catalyst. The liquid product stream thereof is passed to a first separation stage wherein a vapor phase product stream and a liquid product stream are produced. The liquid product stream, which has a substantially lower sulfur and nitrogen content than the original feedstream is passed to a second hydrodesulfurizing stage also containing one or more reaction zones where it is reacted in the presence of hydrogen and a second hydrodesulfurizing catalyst at hydrodesulfurizing conditions. The catalyst in any one or more reaction zones is a bulk multimetallic catalyst comprised of at lease one Group VIII non-noble metal and at least two Group VIB metals.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: March 8, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, Darlene Schuette, Stuart Leon Soled, Sabato Miseo, William Lee Schuette
  • Patent number: 6783663
    Abstract: A hydroprocessing process, comprising: contacting a feedstock, at hydrotreating conditions, with a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals and wherein the ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10 to form a hydrotreated product.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: August 31, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, Darryl Patrick Klein, Zhiguo Hou, Stuart Leon Soled, Michael Charles Kerby, Gary Brice McVicker, Edward Stanley Ellis, Michele Sue Touvelle, Sabato Miseo
  • Patent number: 6758963
    Abstract: A process for preparing a lubricating oil basestock containing at least about 90% saturates. The process employs a bulk catalyst comprising at least one non-noble Group VIII metal and two Group VIB metals and wherein said metal catalyst further comprises a non-noble Group VIII molybdate in which at least a portion but less than all of molybdenum is replaced by tungsten.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: July 6, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Slyvain S. Hantzer, Kenneth Lloyd Riley
  • Patent number: 6755963
    Abstract: This invention provides a process for hydrotreating hydrocarbon resins, which process comprises contacting a feedstock comprising a hydrocarbon resin or rosin, under suitable hydrotreating conditions, with a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals and wherein the ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10. The process according to the invention can achieve increased hydrocarbon resin productivity through increase in throughput volumes and effective catalyst lifetimes. The process of the invention is desirably practiced with a bulk catalyst consisting of only the combination of the metal species with the active metal components. The absence of carrier substrates largely removes the possibility of halogen accumulation on substrate surfaces that, in turn, can acidify metal catalysts such that additional, progressive cracking of the hydrocarbon resin molecules occurs.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: June 29, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jerry L. Haluska, Kenneth Lloyd Riley
  • Patent number: 6652738
    Abstract: The invention pertains to a process for the hydroprocessing of a hydrocarbon feedstock wherein said feedstock is contacted at hydroprocessing conditions with a catalyst composition which comprises bulk catalyst particles which comprise at least one Group VIII non-noble metal and at least two Group VIB metals. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of the bulk catalyst particles. The metals are present in the catalyst composition in their oxidic and/or sulfidic state. The catalyst composition has an X-ray diffraction pattern in which the characteristic full width at half maximum does not exceed 2.5° when the Group VIB metals are molybdenum, tungsten, and, optionally, chromium, or does not exceed 4.0° when the Group VIB metals are molybdenum and chromium or tungsten and chromium.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: November 25, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6635599
    Abstract: The present invention relates to a process for the preparation of a hydroprocessing catalyst, to the catalyst composition obtainable by said process, and to the use of said catalyst composition in hydroprocessing applications. The process comprises the steps of combining and reacting at least one Group VIII non-noble metal component in solution and at least two Group VIB metal components in solution in a reaction mixture to obtain an oxygen-stable precipitate, and sulfiding the precipitate.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: October 21, 2003
    Assignee: Exxonmobil Research & Engineering Company
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Hermannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6620313
    Abstract: Hydroconversion process of petroleum and chemical feedstocks using bulk Group VIII/Group VIB catalysts. Preferred catalysts include those comprised of Ni—Mo—W.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: September 16, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Richard Alan Demmin, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Publication number: 20030150778
    Abstract: This invention provides a process for hydrotreating hydrocarbon resins, which process comprises contacting a feedstock comprising a hydrocarbon resin or rosin, under suitable hydrotreating conditions, with a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals and wherein the ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10. The process accord invention can achieve increased hydrocarbon resin productivity through increase in throughput volumes and effective catalyst lifetimes. The process of the invention is desirably practiced with a bulk catalyst consisting of only the combination of the metal species with the active metal components. The absence of carrier substrates largely removes the possibility of halogen accumulation on substrate surfaces that, in turn, can acidify metal catalysts such that additional, progressive cracking of the hydrocarbon resin molecules occurs.
    Type: Application
    Filed: October 1, 2002
    Publication date: August 14, 2003
    Inventors: Jerry L. Haluska, Kenneth Lloyd Riley
  • Patent number: 6582590
    Abstract: Sulfur content of distillate feedstock, which is greater than 3,000 wppm, is reduced using multi-stage hydrodesulfurization by reacting the feestream in stages with reaction zone(s) containing bulk multimetallic catalyst comprised of Group VIII non-noble metal(s) and at least two group VIB metals. The ratio of Group VIB to Group VIII non-noble metals is 10:1 to 1:10.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: June 24, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, Darryl Patrick Klein, Zhiguo Hou, Stuart Leon Soled, Michael Charles Kerby, Gary Brice McVicker, Edward Stanley Ellis, Michele Sue Touvelle, Sabato Miseo
  • Publication number: 20030102254
    Abstract: The invention pertains to a process for the hydroprocessing of a hydrocarbon feedstock wherein said feedstock is contacted at hydroprocessing conditions with a catalyst composition which comprises bulk catalyst particles which comprise at least one Group VIII non-noble metal and at least two Group VIB metals. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of the bulk catalyst particles. The metals are present in the catalyst composition in their oxidic and/or sulfidic state. The catalyst composition has an X-ray diffraction pattern in which the characteristic full width at half maximum does not exceed 2.5° when the Group VIB metals are molybdenum, tungsten, and, optionally, chromium, or does not exceed 4.0° when the Group VIB metals are molybdenum and chromium or tungsten and chromium.
    Type: Application
    Filed: January 16, 2003
    Publication date: June 5, 2003
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6534437
    Abstract: The invention pertains to a process for preparing a catalyst composition comprising bulk catalyst particles comprising at least one Group VIII non-noble metal and at least two Group VIB metals. The process comprises combining and reacting at least one Group VIII non-noble metal component with at least two Group VIB metal components in the presence of a protic liquid, with at least one of the metal components remaining at least partly in the solid state during the entire process. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of said bulk catalyst particles, with the solubility of those of the metal components which are at least partly in the solid state during the reaction being less than 0.05 mol/100 ml water at 18° C.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: March 18, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Publication number: 20020112987
    Abstract: A slurry hydroprocessing process (SHP) where a hydrocarbon feedstock is treated at slurry hydrotreating conditions, in the presence of a hydrogen containing treat gas and in the presence of a supported metallic catalyst which is a supported sulfide of a metal selected from the group of non-noble Group VIII metals, Group VIB metals and mixtures thereof where the support is an inorganic oxide and where the catalyst has an average diameter of about 0.5 to about 100 microns to obtain a first product stream comprising the catalyst and a hydroprocessed feedstream; separating the first product into a catalyst-free product stream and a catalyst-containing stream and recycling at least a portion of the catalyst-containing stream back to the hydroprocessing step.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 22, 2002
    Inventors: Zhiguo Hou, Bearden Roby, Kenneth Lloyd Riley, Craig Young Sabottke, David Thomas Ferrughelli, Martin Leo Gorbaty, William Neergaard Olmstead
  • Publication number: 20020065441
    Abstract: The invention pertains to a process for the hydroprocessing of a hydrocarbon feedstock wherein a catalyst composition is contacted with the feedstock. The catalyst composition comprises bulk catalyst particles comprising at least one Group VIII non-noble metal and at least two Group VIB metals made by a process comprising combining and reacting at least one Group VIII non-noble metal component with at least two Group VIB metal components in the presence of a protic liquid, with at least one of the metal components remaining at least partly in the solid state during the entire process.
    Type: Application
    Filed: March 1, 2001
    Publication date: May 30, 2002
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6383366
    Abstract: Waxy feeds are treated under hydroisomerization conditions to produce good yields of an isomerate product of high VI by using a silica-alumina based catalyst in which the silica-alumina has a pore volume less of 0.99 ml/gm (H2O), an alumina content in the range of 35 to 55 wt % and an isoelectric point in the range of 4.5 to 6.5. A lube fraction of the isomerate is dewaxed to provide a lube basestock of high VI. The silica-alumina may be modified with a rare earth oxide or yttria or boria or magnesia in which instance the modified catalyst has an isoelectric point greater than but no more than 2 points greater than base the silica-alumina.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, William John Murphy, Ian Alfred Cody, Stuart Leon Soled, Gary Brice McVicker, Sabato Miseo
  • Publication number: 20020010088
    Abstract: The invention pertains to a process for preparing a catalyst composition comprising bulk catalyst particles comprising at least one Group VIII non-noble metal and at least two Group VIB metals. The process comprises combining and reacting at least one Group VIII non-noble metal component with at least two Group VIB metal components in the presence of a protic liquid, with at least one of the metal components remaining at least partly in the solid state during the entire process. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of said bulk catalyst particles, with the solubility of those of the metal components which are at least partly in the solid state during the reaction being less than 0.05 mol/100 ml water at 18° C.
    Type: Application
    Filed: April 17, 2001
    Publication date: January 24, 2002
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Harmannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6278030
    Abstract: An improved process for preparing alcohols by the Oxo process. More particularly this invention relates to an improvement in the hydrogenation step of the Oxo process characterized in the use of certain bulk multimetallic hydrogenation catalysts comprised of at least one Group VIII non-noble metal and at least two Group VIB metals.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: August 21, 2001
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Jose Manuel Vargas, Kenneth Lloyd Riley