Patents by Inventor Kenneth Marken

Kenneth Marken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7562433
    Abstract: A method for fabrication of nanometer scale metal fibers, followed by optional further processing into cables, yarns and textiles composed of the primary nanofibers. A multicomponent composite is first formed by drilling a billet of matrix metal, and inserting rods of the metal desired as nanofibers. Hexed or round rods can also be inserted into a matrix metal can. The diameter of this composite is then reduced by mechanical deformation methods. This composite is then cut to shorter lengths and reinserted into another billet of matrix metal, and again the diameter is reduced by mechanical deformation. This process of large scale metal stacking followed by mechanical deformation is repeated until the desired fiber size scale is reached, the fibers being contained in the matrix metal. After size reduction, the composite metal wires may be further processed into built up configurations, depending on intended application, by stranding, cabling, braiding, weaving, knitting, felting, etc.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 21, 2009
    Assignee: Oxford Superconducting Technology
    Inventors: Seung Hong, William G. Marancik, Jeff Parrell, Michael Field, Kenneth Marken, Youzhu Zhang
  • Publication number: 20070234545
    Abstract: A method for fabrication of nanometer scale metal fibers, followed by optional further processing into cables, yarns and textiles composed of the primary nanofibers. A multicomponent composite is first formed by drilling a billet of matrix metal, and inserting rods of the metal desired as nanofibers. Hexed or round rods can also be inserted into a matrix metal can. The diameter of this composite is then reduced by mechanical deformation methods. This composite is then cut to shorter lengths and reinserted into another billet of matrix metal, and again the diameter is reduced by mechanical deformation. This process of large scale metal stacking followed by mechanical deformation is repeated until the desired fiber size scale is reached, the fibers being contained in the matrix metal. After size reduction, the composite metal wires may be further processed into built up configurations, depending on intended application, by stranding, cabling, braiding, weaving, knitting, felting, etc.
    Type: Application
    Filed: September 26, 2005
    Publication date: October 11, 2007
    Inventors: Seung Hong, William Marancik, Jeff Parrell, Michael Field, Kenneth Marken, Youzhu Zhang