Patents by Inventor Kenneth Michael Jacobs

Kenneth Michael Jacobs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11647889
    Abstract: Systems for obtaining an image of a target are provided including at least one multi-wavelength illumination module configured to illuminate a target using two or more different wavelengths, each penetrating the target at different depths; a multi-wavelength camera configured to detect the two or more different wavelengths illuminating the target on corresponding different channels and acquire corresponding images of the target based on the detected two or more different wavelengths illuminating the target; a control module configured synchronize illumination of the target by the at least one multi-wavelength illumination module and detection of the two or more different wavelengths by the camera; an analysis module configured to receive the acquired images of the target and analyze the acquired images to provide analysis results; and an image visualization module modify the acquired images based on the analysis results to provide a final improved image in real-time.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: May 16, 2023
    Assignee: East Carolina University
    Inventors: Cheng Chen, Jiahong Jin, Thomas Bruce Ferguson, Kenneth Michael Jacobs, Taylor Forbes, Bryent Tucker, Xin Hua Hu
  • Patent number: 10792492
    Abstract: Methods for calculating a MetaKG signal are provided. The method including illuminating a region of interest in a sample with a near-infrared (NIR) light source and/or a visible light source; acquiring images of the region of interest; processing the acquired images to obtain metadata associated with the acquired images; and calculating the MetaKG signal from the metadata associated with the acquired images. Related systems and computer program products are also provided.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 6, 2020
    Assignee: East Carolina University
    Inventors: Cheng Chen, Thomas Bruce Ferguson, Jr., Sunghan Kim, Zhiyong Peng, Kenneth Michael Jacobs
  • Publication number: 20200305721
    Abstract: Systems for obtaining an image of a target are provided including at least one multi-wavelength illumination module configured to illuminate a target using two or more different wavelengths, each penetrating the target at different depths; a multi-wavelength camera configured to detect the two or more different wavelengths illuminating the target on corresponding different channels and acquire corresponding images of the target based on the detected two or more different wavelengths illuminating the target; a control module configured synchronize illumination of the target by the at least one multi-wavelength illumination module and detection of the two or more different wavelengths by the camera; an analysis module configured to receive the acquired images of the target and analyze the acquired images to provide analysis results; and an image visualization module modify the acquired images based on the analysis results to provide a final improved image in real-time.
    Type: Application
    Filed: March 25, 2020
    Publication date: October 1, 2020
    Inventors: Cheng Chen, JIAHONG JIN, THOMAS BRUCE FERGUSON, JR., KENNETH MICHAEL JACOBS, TAYLOR FORBES, BRYENT TUCKER, XIN HUA HU
  • Patent number: 10722173
    Abstract: Methods for combining anatomical data and physiological data on a single image are provided. The methods include obtaining an image, for example, a raw near-infrared (NIR) image or a visible image, of a sample. The image of the sample includes anatomical structure of the sample. A physiologic map of blood flow and perfusion of the sample is obtained. The anatomical structure of the image and the physiologic map of the sample are combined into a single image of the sample. The single image of the sample displays anatomy and physiology of the sample in the single image in real time. Related systems and computer program products are also provided.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 28, 2020
    Assignee: East Carolina University
    Inventors: Cheng Chen, Thomas Bruce Ferguson, Jr., Kenneth Michael Jacobs, Zhiyong Peng
  • Patent number: 10390718
    Abstract: Multispectral imaging systems are provided including a first light source having a first wavelength configured to image a sample; a second light source, different from the first light source, having a second wavelength, different from the first wavelength, configured to image the sample; and at least a third light source, different from the first and second light sources, having a third wavelength, different from the first and second wavelengths, configured to image the sample. A camera is configured to receive information related to the first, second and at least third light sources from the sample. A processor is configured to combine the information related to the first, second and at least third light sources provided by the camera to image an anatomical structure of the sample, image physiology of blood flow and perfusion of the sample and/or synthesize the anatomical structure and the physiology of blood flow and perfusion of the sample in terms of a blood flow rate distribution.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: August 27, 2019
    Assignee: East Carolina University
    Inventors: Cheng Chen, T. Bruce Ferguson, Jr., Kenneth Michael Jacobs
  • Publication number: 20190086198
    Abstract: Methods, systems and computer program products are provided for determining parameters during a surgical procedure. A plurality of patterns are projected onto an object plane associated with a target to be imaged. The plurality of patterns are manipulated such that the plurality of patterns overlap at a common point indicating a proper object distance from the target to be imaged.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 21, 2019
    Inventors: Cheng Chen, Zhiyong Peng, Kenneth Michael Jacobs, T. Bruce Ferguson, JR.
  • Publication number: 20180337507
    Abstract: A fiber assembly is provided including a laser input end configured to receive an input signal having a first laser beam intensity. The fiber assembly further includes a plurality of channels attached to the laser input end and a plurality of laser safety adaptors. Each of the plurality of laser safety adaptors is configured to receive a corresponding one of the plurality of channels. A laser beam exiting each of the plurality of laser safety adaptors has a second laser beam intensity that is less than the first laser beam intensity.
    Type: Application
    Filed: March 24, 2016
    Publication date: November 22, 2018
    Inventors: Zhiyong Peng, T. Bruce Ferguson, JR., Cheng Chen, Kenneth Michael Jacobs
  • Patent number: 10058256
    Abstract: Some embodiments of the present inventive concept provide a system that uses two wavelengths of differential transmittance through a sample to apply laser speckle or laser Doppler imaging. A first of the two wavelengths is within the visible range that has zero or very shallow penetration. This wavelength captures the anatomical structure of tissue/organ surface and serves as a position marker of the sample but not the subsurface movement of blood flow and perfusion. A second wavelength is in the near Infra-Red (NIR) range, which has much deeper penetration. This wavelength reveals the underlying blood flow physiology and correlates both to the motion of the sample and also the movement of blood flow and perfusion. Thus, true motion of blood flow and perfusion can be derived from the NIR imaging measurement without being affected by the motion artifact of the target.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: August 28, 2018
    Assignee: East Carolina University
    Inventors: Cheng Chen, T. Bruce Ferguson, Jr., Zhiyong Peng, Kenneth Michael Jacobs
  • Publication number: 20180067327
    Abstract: An optical imaging system and related methods are provided that acquire images of an object at a distance in different spectral regions using only one camera. The systems and methods are adaptable to applications where information (simultaneous or sequential) from more than one spectral region is of interest while only one camera is available or entailed.
    Type: Application
    Filed: March 22, 2016
    Publication date: March 8, 2018
    Inventors: Zhiyong Peng, T. Bruce Ferguson, JR., Cheng Chen, Kenneth Michael Jacobs
  • Publication number: 20180020932
    Abstract: Multispectral imaging systems are provided including a first light source having a first wavelength configured to image a sample; a second light source, different from the first light source, having a second wavelength, different from the first wavelength, configured to image the sample; and at least a third light source, different from the first and second light sources, having a third wavelength, different from the first and second wavelengths, configured to image the sample. A camera is configured to receive information related to the first, second and at least third light sources from the sample. A processor is configured to combine the information related to the first, second and at least third light sources provided by the camera to image an anatomical structure of the sample, image physiology of blood flow and perfusion of the sample and/or synthesize the anatomical structure and the physiology of blood flow and perfusion of the sample in terms of a blood flow rate distribution.
    Type: Application
    Filed: August 28, 2017
    Publication date: January 25, 2018
    Inventors: Cheng Chen, T. Bruce Ferguson, JR., Kenneth Michael Jacobs
  • Publication number: 20170274205
    Abstract: Methods for calculating a MetaKG signal are provided. The method including illuminating a region of interest in a sample with a near-infrared (NIR) light source and/or a visible light source; acquiring images of the region of interest; processing the acquired images to obtain metadata associated with the acquired images; and calculating the MetaKG signal from the metadata associated with the acquired images. Related systems and computer program products are also provided.
    Type: Application
    Filed: October 13, 2015
    Publication date: September 28, 2017
    Inventors: Cheng Chen, Thomas Bruce Ferguson, JR., Sunghan Kim, Zhiyong Peng, Kenneth Michael Jacobs
  • Publication number: 20170224274
    Abstract: Methods for combining anatomical data and physiological data on a single image are provided. The methods include obtaining an image, for example, a raw near-infrared (NIR) image or a visible image, of a sample. The image of the sample includes anatomical structure of the sample. A physiologic map of blood flow and perfusion of the sample is obtained. The anatomical structure of the image and the physiologic map of the sample are combined into a single image of the sample. The single image of the sample displays anatomy and physiology of the sample in the single image in real time. Related systems and computer program products are also provided.
    Type: Application
    Filed: October 13, 2015
    Publication date: August 10, 2017
    Inventors: Cheng Chen, Thomas Bruce Ferguson, JR., Kenneth Michael Jacobs, Zhiyong Peng
  • Publication number: 20160270672
    Abstract: Some embodiments of the present inventive concept provide a system that uses two wavelengths of differential transmittance through a sample to apply laser speckle or laser Doppler imaging. A first of the two wavelengths is within the visible range that has zero or very shallow penetration. This wavelength captures the anatomical structure of tissue/organ surface and serves as a position marker of the sample but not the subsurface movement of blood flow and perfusion. A second wavelength is in the near Infra-Red (NIR) range, which has much deeper penetration. This wavelength reveals the underlying blood flow physiology and correlates both to the motion of the sample and also the movement of blood flow and perfusion. Thus, true motion of blood flow and perfusion can be derived from the NIR imaging measurement without being affected by the motion artifact of the target.
    Type: Application
    Filed: February 26, 2016
    Publication date: September 22, 2016
    Inventors: Cheng Chen, T. Bruce Ferguson, JR., Zhiyong Peng, Kenneth Michael Jacobs