Patents by Inventor Kenneth P. Hinckley
Kenneth P. Hinckley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20170010695Abstract: A user-wearable device (UWD) worn by a user of a touchscreen may provide kinematic data of the UWD and/or identification data of the user to a processor that operates the touchscreen. Such data may allow the processor to perform a number of user-touchscreen interactions, such as displaying user-specific windows or menus, processing user-manipulation of displayed objects, and determining which hand of a user performs a touch event, just to name a few examples.Type: ApplicationFiled: December 8, 2015Publication date: January 12, 2017Inventors: Michel Pahud, Kenneth P. Hinckley, William Buxton, Eyal Ofek, Andrew M. Webb
-
Publication number: 20170011681Abstract: A display system includes a display, a content component, a focus region component, and a refresh rate component. The display is configured to selectively display information with refresh rates that vary across a plurality of display regions of the display screen. The content component is configured to receive content for display on the display screen and to provide the content to the display. The focus region component is configured to determine a focus region of a user in relation to the display screen. The focus region includes one of the plurality of display regions at which a user is likely looking. The refresh rate component is configured to select the refresh rates of the display elements in the plurality of display regions. A refresh rate in the focus region may be different than a refresh rate in one or more other display regions of the plurality of display regions.Type: ApplicationFiled: September 12, 2016Publication date: January 12, 2017Inventors: Steven Bathiche, Jesse R. Cheatham, III, Paul H. Dietz, Matthew G. Dyor, Philip A. Eckhoff, Anoop Gupta, Kenneth P. Hinckley, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Andreas G. Nowatzyk, Robert C. Petroski, Danny Allen Reed, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
-
Publication number: 20160378331Abstract: Techniques involving gestures and other functionality are described. In one or more implementations, the techniques describe gestures that are usable to provide inputs to a computing device. A variety of different gestures are contemplated, including bimodal gestures (e.g., using more than one type of input) and single modal gestures. Additionally, the gesture techniques may be configured to leverage these different input types to increase the amount of gestures that are made available to initiate operations of a computing device.Type: ApplicationFiled: July 28, 2016Publication date: December 29, 2016Inventors: Kenneth P. Hinckley, Koji Yatani, Michel Pahud
-
Patent number: 9519356Abstract: Techniques involving gestures and other functionality are described. In one or more implementations, the techniques describe gestures that are usable to provide inputs to a computing device. A variety of different gestures are contemplated, including bimodal gestures (e.g., using more than one type of input) and single modal gestures. Additionally, the gesture techniques may be configured to leverage these different input types to increase the amount of gestures that are made available to initiate operations of a computing device.Type: GrantFiled: February 4, 2010Date of Patent: December 13, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Kenneth P. Hinckley, Koji Yatani, Andrew S. Allen, Jonathan R. Harris, Georg F. Petschnigg
-
Patent number: 9519419Abstract: Skinnable touch device grip pattern techniques are described herein. A touch-aware skin may be configured to substantially cover the outer surfaces of a computing device. The touch-aware skin may include a plurality of skin sensors configured to detect interaction with the skin at defined locations. The computing device may include one or more modules operable to obtain input from the plurality of skin sensors and decode the input to determine grips patterns that indicate how the computing device is being held by a user. Various functionality provided by the computing device may be selectively enabled and/or adapted based on a determined grip pattern such that the provided functionality may change to match the grip pattern.Type: GrantFiled: January 17, 2012Date of Patent: December 13, 2016Assignee: Microsoft Technology Licensing, LLCInventors: Kenneth P. Hinckley, Paul Henry Dietz, Hrvoje Benko, Desney S. Tan, Steven Nabil Bathiche
-
Publication number: 20160342326Abstract: Techniques involving gestures and other functionality are described. In one or more implementations, the techniques describe gestures that are usable to provide inputs to a computing device. A variety of different gestures are contemplated, including bimodal gestures (e.g., using more than one type of input) and single modal gestures. Additionally, the gesture techniques may be configured to leverage these different input types to increase the amount of gestures that are made available to initiate operations of a computing device.Type: ApplicationFiled: June 28, 2016Publication date: November 24, 2016Inventors: Kenneth P. Hinckley, Koji Yatani
-
Publication number: 20160283021Abstract: A computing device includes a fingerprint detection module for detecting fingerprint information that may be contained within touch input event(s) provided by a touch input mechanism. The computing device can leverage the fingerprint information in various ways. In one approach, the computing device can use the fingerprint information to enhance an interpretation of the touch input event(s), such as by rejecting parts of the touch input event(s) associated with an unintended input action. In another approach, the computing device can use the fingerprint information to identify an individual associated with the fingerprint information. The computing device can apply this insight to provide a customized user experience to that individual, such as by displaying content that is targeted to that individual.Type: ApplicationFiled: November 23, 2015Publication date: September 29, 2016Inventors: Kenneth P. Hinckley, Michel Pahud
-
Publication number: 20160283104Abstract: Bezel gestures for touch displays are described. In at least some embodiments, the bezel of a device is used to extend functionality that is accessible through the use of so-called bezel gestures. In at least some embodiments, off-screen motion can be used, by virtue of the bezel, to create screen input through a bezel gesture. Bezel gestures can include single-finger bezel gestures, multiple-finger/same-hand bezel gestures, and/or multiple-finger, different-hand bezel gestures.Type: ApplicationFiled: June 10, 2016Publication date: September 29, 2016Inventors: Kenneth P. Hinckley, Koji Yatani
-
Patent number: 9454304Abstract: Embodiments of a multi-screen dual tap gesture are described. In various embodiments, a first tap input to a displayed object is recognized at a first screen of a multi-screen system. A second tap input to the displayed object is recognized at a second screen of the multi-screen system, and the second tap input is recognized approximately when the first tap input is recognized. A dual tap gesture can then be determined from the recognized first and second tap inputs.Type: GrantFiled: February 25, 2010Date of Patent: September 27, 2016Assignee: Microsoft Technology Licensing, LLCInventors: Kenneth P. Hinckley, Koji Yatani
-
Publication number: 20160261666Abstract: The subject disclosure is directed towards co-located collaboration/data sharing that is based upon detecting the proxemics of people and/or the proxemics of devices. A federation of devices is established based upon proxemics, such as when the users have entered into a formation based upon distance between them and orientation. User devices may share content with other devices in the federation based upon micro-mobility actions performed on the devices, e.g., tilting and/or otherwise interacting with a sending device.Type: ApplicationFiled: March 4, 2016Publication date: September 8, 2016Inventors: Kenneth P. Hinckley, Nicolai Marquardt
-
Patent number: 9423876Abstract: Embodiments of the present invention relate to systems, methods and computer storage media for detecting user input in an extended interaction space of a device, such as a handheld device. The method and system allow for utilizing a first sensor of the device sensing in a positive z-axis space of the device to detect a first input, such as a user's non-device-contacting gesture. The method and system also contemplate utilizing a second sensor of the device sensing in a negative z-axis space of the device to detect a second input. Additionally, the method and system contemplate updating a user interface presented on a display in response to detecting the first input by the first sensor in the positive z-axis space and detecting the second input by the second sensor in the negative z-axis space.Type: GrantFiled: September 30, 2011Date of Patent: August 23, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Eric Horvitz, Kenneth P Hinckley, Hrvoje Benko, Desney S Tan
-
Patent number: 9411498Abstract: Techniques involving gestures and other functionality are described. In one or more implementations, the techniques describe gestures that are usable to provide inputs to a computing device. A variety of different gestures are contemplated, including bimodal gestures (e.g., using more than one type of input) and single modal gestures. Additionally, the gesture techniques may be configured to leverage these different input types to increase the amount of gestures that are made available to initiate operations of a computing device.Type: GrantFiled: May 30, 2012Date of Patent: August 9, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Kenneth P. Hinckley, Koji Yatani
-
Patent number: 9411504Abstract: Techniques involving gestures and other functionality are described. In one or more implementations, the techniques describe gestures that are usable to provide inputs to a computing device. A variety of different gestures are contemplated, including bimodal gestures (e.g., using more than one type of input) and single modal gestures. Additionally, the gesture techniques may be configured to leverage these different input types to increase the amount of gestures that are made available to initiate operations of a computing device.Type: GrantFiled: January 28, 2010Date of Patent: August 9, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Kenneth P. Hinckley, Koji Yatani, Michel Pahud
-
Patent number: 9405402Abstract: An electronic device may include a touch screen electronic display configured to offset and/or shift the contact locations of touch implements and/or displayed content based on one or more calculated parallax values. The parallax values may be associated with the viewing angle of an operator relative to the display of the electronic device. In various embodiments, the parallax value(s) may be calculated using three-dimensional location sensors, an angle of inclination of a touch implement, and/or one or more displayed calibration objects. Parallax values may be utilized to remap contact locations by a touch implement, shift and/or offset displayed content, and/or perform other transformations as described herein. A stereoscopically displayed content may be offset such that a default display plane is coplanar with a touch surface rather than a display surface. Contacts by a finger may be remapped using portions of the contact region and/or a centroid of the contact region.Type: GrantFiled: May 15, 2013Date of Patent: August 2, 2016Assignee: ELWHA LLCInventors: Steven Bathiche, Jesse R. Cheatham, III, Paul H. Dietz, Matthew G. Dyor, Philip A. Eckhoff, Anoop Gupta, Jr., Kenneth P. Hinckley, III, Roderick A Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Andreas G. Nowatzyk, Robert C. Petroski, Danny Allen Reed, Clarence T. Tegreene, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr.
-
Patent number: 9395902Abstract: An electronic device may include a touch screen electronic display configured to offset and/or shift the contact locations of touch implements and/or displayed content based on one or more calculated parallax values. The parallax values may be associated with the viewing angle of an operator relative to the display of the electronic device. In various embodiments, the parallax value(s) may be calculated using three-dimensional location sensors, an angle of inclination of a touch implement, and/or one or more displayed calibration objects. Parallax values may be utilized to remap contact locations by a touch implement, shift and/or offset displayed content, and/or perform other transformations as described herein. A stereoscopically displayed content may be offset such that a default display plane is coplanar with a touch surface rather than a display surface. Contacts by a finger may be remapped using portions of the contact region and/or a centroid of the contact region.Type: GrantFiled: March 15, 2013Date of Patent: July 19, 2016Assignee: ELWHA LLCInventors: Steven Bathiche, Jesse R. Cheatham, III, Paul H. Dietz, Matthew G. Dyor, Philip A. Eckhoff, Anoop Gupta, Jr., Kenneth P. Hinckley, III, Roderick A Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Andreas G. Nowatzyk, Robert C. Petroski, Danny Allen Reed, Clarence T. Tegreene, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr.
-
Patent number: 9389728Abstract: An electronic device may include a touch screen electronic display configured to offset and/or shift the contact locations of touch implements and/or displayed content based on one or more calculated parallax values. The parallax values may be associated with the viewing angle of an operator relative to the display of the electronic device. In various embodiments, the parallax value(s) may be calculated using three-dimensional location sensors, an angle of inclination of a touch implement, and/or one or more displayed calibration objects. Parallax values may be utilized to remap contact locations by a touch implement, shift and/or offset displayed content, and/or perform other transformations as described herein. A stereoscopically displayed content may be offset such that a default display plane is coplanar with a touch surface rather than a display surface. Contacts by a finger may be remapped using portions of the contact region and/or a centroid of the contact region.Type: GrantFiled: March 15, 2013Date of Patent: July 12, 2016Assignee: ELWHA LLCInventors: Steven Bathiche, Jesse R. Cheatham, III, Paul H. Dietz, Matthew G. Dyor, Philip A. Eckhoff, Anoop Gupta, Jr., Kenneth P. Hinckley, III, Roderick A Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Andreas G. Nowatzyk, Robert C. Petroski, Danny Allen Reed, Clarence T. Tegreene, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr.
-
Publication number: 20160180762Abstract: A display system includes a display, a content component, a focus region component, and a refresh rate component. The display is configured to selectively display information with refresh rates that vary across a plurality of display regions of the display screen. The content component is configured to receive content for display on the display screen and to provide the content to the display. The focus region component is configured to determine a focus region of a user in relation to the display screen. The focus region includes one of the plurality of display regions at which a user is likely looking. The refresh rate component is configured to select the refresh rates of the display elements in the plurality of display regions. A refresh rate in the focus region may be different than a refresh rate in one or more other display regions of the plurality of display regions.Type: ApplicationFiled: December 22, 2014Publication date: June 23, 2016Inventors: Steven Bathiche, Jesse R. Cheatham, III, Paul H. Dietz, Matthew G. Dyor, Philip A. Eckhoff, Anoop Gupta, Kenneth P. Hinckley, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Andreas G. Nowatzyk, Robert C. Petroski, Danny Allen Reed, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
-
Publication number: 20160180798Abstract: A display system includes a display, a focus region component, a content update component, and a content component. The focus region component is configured to determine a focus region of a user in relation to a display screen of the display. The focus region includes a region of the display screen at which a user is likely looking. The content update component is configured to select content update rates for a plurality of display regions of the display screen, including the focus region. The content update rate in the focus region is different than a content update rate in one or more other display regions of the plurality of display regions. The content component is configured to receive content and updated content for display on the display screen and to provide the content to the display based on the content update rates.Type: ApplicationFiled: December 22, 2014Publication date: June 23, 2016Inventors: Steven Bathiche, Jesse R. Cheatham, III, Paul H. Dietz, Matthew G. Dyor, Philip A. Eckhoff, Anoop Gupta, Kenneth P. Hinckley, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Andreas G. Nowatzyk, Robert C. Petroski, Danny Allen Reed, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
-
Patent number: 9367205Abstract: Bezel gestures for touch displays are described. In at least some embodiments, the bezel of a device is used to extend functionality that is accessible through the use of so-called bezel gestures. In at least some embodiments, off-screen motion can be used, by virtue of the bezel, to create screen input through a bezel gesture. Bezel gestures can include single-finger bezel gestures, multiple-finger/same-hand bezel gestures, and/or multiple-finger, different-hand bezel gestures.Type: GrantFiled: February 19, 2010Date of Patent: June 14, 2016Assignee: MICROSOFT TECHNOLGOY LICENSING, LLCInventors: Kenneth P. Hinckley, Koji Yatani
-
Patent number: 9310994Abstract: Bezel gestures for touch displays are described. In at least some embodiments, the bezel of a device is used to extend functionality that is accessible through the use of so-called bezel gestures. In at least some embodiments, off-screen motion can be used, by virtue of the bezel, to create screen input through a bezel gesture. Bezel gestures can include single-finger bezel gestures, multiple-finger/same-hand bezel gestures, and/or multiple-finger, different-hand bezel gestures.Type: GrantFiled: February 19, 2010Date of Patent: April 12, 2016Assignee: Microsoft Technology Licensing, LLCInventors: Kenneth P. Hinckley, Koji Yatani