Patents by Inventor Kenneth Paul Blackmon

Kenneth Paul Blackmon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10745537
    Abstract: A polymeric composition may include a polyolefin or styrenic polymer, a metallic acrylate salt, and an acid neutralizer.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: August 18, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Leonardo Cortes, Fengkui Li, Jon Tippet, Kenneth Paul Blackmon, Marc Mayhall, Leland Daniels, John Ashbaugh
  • Patent number: 9527785
    Abstract: A process is disclosed that includes reacting a C1 source with n-butene to form a C-5 diolefin.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 27, 2016
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Kenneth Paul Blackmon, Sivadinarayana Chinta, Jun Wang
  • Publication number: 20160237239
    Abstract: A polymeric composition may include a polyolefin or styrenic polymer, a metallic acrylate salt, and an acid neutralizer.
    Type: Application
    Filed: February 16, 2015
    Publication date: August 18, 2016
    Inventors: Leonardo Cortes, Fengkui Li, Jon Tippet, Kenneth Paul Blackmon, Marc Mayhall, Leland Daniels, John Ashbaugh
  • Publication number: 20140288343
    Abstract: A process is disclosed that includes reacting a C1 source with n-butene to form a C-5 diolefin.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 25, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Kenneth Paul Blackmon, Sivadinarayana Chinta, Jun Wang
  • Patent number: 7470764
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: December 30, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 7202191
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: April 10, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael R. Wallace
  • Patent number: 7109143
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 19, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 7022796
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: April 4, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Publication number: 20040116629
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Application
    Filed: September 10, 2003
    Publication date: June 17, 2004
    Applicant: Fina Technology Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Publication number: 20040048991
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 11, 2004
    Applicant: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 6703460
    Abstract: It has been discovered that sequential polyperoxides can be beneficially used as initiators for vinylaromatic/diene copolymers to give high grafting values and reasonable molecular weights. A new cyclic diperoxide did not give these same results. The sequential polyperoxide initiators can be used as the only initiators or together with other conventional peroxide initiators to advantage. The polymerization rate can also be increased using these sequential polyperoxide initiators.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: March 9, 2004
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Lu Ann Kelly
  • Patent number: 6657024
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: December 2, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 6657025
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 2, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Publication number: 20020161139
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Application
    Filed: January 11, 2002
    Publication date: October 31, 2002
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie