Patents by Inventor Kenneth R. Crounse

Kenneth R. Crounse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230177998
    Abstract: An electro-optic display having a plurality of pixels is driven from a first image to a second image using a first drive scheme, and then from the second image to a third image using a second drive scheme different from the first drive scheme and having at least one impulse differential gray level having an impulse potential different from the corresponding gray level in the first drive scheme. Each pixel which is in an impulse differential gray level in the second image is driven from the second image to the third image using a modified version of the second drive scheme which reduces its impulse differential The subsequent transition from the third image to a fourth image is also conducted using the modified second drive scheme but after a limited number of transitions using the modified second drive scheme, all subsequent transitions are conducted using the unmodified second drive scheme.
    Type: Application
    Filed: October 28, 2022
    Publication date: June 8, 2023
    Inventors: Demetrious Mark HARRINGTON, Kenneth R. CROUNSE, Karl Raymond AMUNDSON, Teck Ping SIM, Matthew J. APREA
  • Patent number: 11657773
    Abstract: A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods include (a) applying a first drive scheme to a non-zero minor proportion of the pixels of the display and a second drive scheme to the remaining pixels, the pixels using the first drive scheme being changed at each transition; (b) using two different drive schemes on different groups of pixels so that pixels in differing groups undergoing the same transition will not experience the same waveform; (c) applying either a balanced pulse pair or a top-off pulse to a pixel undergoing a white-to-white transition and lying adjacent a pixel undergoing a visible transition; (d) driving extra pixels where the boundary between a driven and undriven area would otherwise fall along a straight line; and (e) driving a display with both DC balanced and DC imbalanced drive schemes, maintaining an impulse bank value for the DC imbalance and modifying transitions to reduce the impulse bank value.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: May 23, 2023
    Assignee: E Ink Corporation
    Inventors: Karl Raymond Amundson, Matthew J. Aprea, Kenneth R. Crounse, Demetrious Mark Harrington, Jason Lin, Theodore A. Sjodin, Chia-Chen Su
  • Patent number: 11656523
    Abstract: An electro-optic display is provided that may include a layer of light-transmissive conductive material, a substrate, a layer of an electro-optic medium disposed between the layer of conductive material and the substrate, a color filter array, and a light emitting layer. The electro-optic medium may include a photo-luminescent material that functions as either a down-converter or an up-converter that may be excited by the light received from the light emitting layer. The photo-luminescent material may be excited by radiation having a first wavelength transmitted by a filter within the color filter array and emit radiation having a second wavelength transmitted by the filter. The photo-luminescent material may also be excited by radiation at a wavelength within a first and second range of wavelengths transmitted by two filters within the color filter array and emit radiation at a wavelength within one of the first and second ranges.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: May 23, 2023
    Assignee: E Ink Corporation
    Inventors: Kenneth R. Crounse, Stephen J. Telfer, Dirk Hertel
  • Patent number: 11657772
    Abstract: There are provided methods for driving an electro-optic display having a plurality of display pixels, a such method includes receiving an image, converting the image into a YCbCr image; and processing the YCbCr image to generate a luma image. The method further includes calculating variations in a local area for the YCbCr image to obtain a variation map, and calculating an effect ratio map using the calculated variation.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 23, 2023
    Assignee: E Ink Corporation
    Inventors: Yuta Asano, Kenneth R. Crounse
  • Publication number: 20230145248
    Abstract: Methods for driving color electrophoretic displays including a plurality of display pixels capable of producing a set of primary colors. The method comprises defining a separation cumulate threshold array and using the separation cumulate threshold array to identify areas of the electrophoretic display that are better suited for dithering and not dithering the areas of the electrophoretic display that exceed the separation cumulate threshold.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 11, 2023
    Inventor: Kenneth R. CROUNSE
  • Publication number: 20230139706
    Abstract: There are provided methods for driving an electro-optic display having a plurality of display pixels, a such method includes detecting a white-to-white graytone transition on a first pixel; and determining whether a threshold number of cardinal neighbors of the first pixel are not making a graytone transition from white to white, or if the first pixel is a color pixel, and apply a first waveform.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 4, 2023
    Inventor: Kenneth R. CROUNSE
  • Publication number: 20230120212
    Abstract: A color electrophoretic display that includes sets of duplicative waveforms to reduce visible artifacts during image updates. Such methods include driving extra pixels where the boundary between a driven and undriven area would otherwise lead to artifact by providing paired sets of driving instructions, allowing the undriven area to be driven while maintain the desired (undriven) optical state.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Kenneth R. CROUNSE, Yuval BEN-DOV, Stephen J. TELFER, Jaya KUMAR
  • Publication number: 20230104517
    Abstract: A system for rendering color images on an electro-optic display when the electro-optic display has a color gamut with a limited palette of primary colors, and/or the gamut is poorly structured (i.e., not a spheroid or obloid). The system uses an iterative process to identify the best color for a given pixel from a palette that is modified to diffuse the color error over the entire electro-optic display. The system additionally accounts for variations in color that are caused by cross-talk between nearby pixels.
    Type: Application
    Filed: November 3, 2022
    Publication date: April 6, 2023
    Inventors: Kenneth R. CROUNSE, Stephen J. TELFER, Edward BUCKLEY, Sunil Krishna SAINIS
  • Publication number: 20230072611
    Abstract: A color electrophoretic display with distinct switching areas formed by a segmented top plane electrode opposite driving pixel electrodes. The distinct areas are programmed to switch at different times, thereby reducing the “flashiness” seen by a viewer during an image update. In one embodiment, the color electrophoretic medium of the display includes a reflective white particle and three other sets of particles, each comprising a different subtractive color.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 9, 2023
    Inventors: Stephen J. TELFER, Richard J. PAOLINI, JR., Karl Raymond AMUNDSON, Kenneth R. CROUNSE, Alain BOUCHARD, Sunil Krishna SAINIS
  • Publication number: 20230056258
    Abstract: Methods are described for driving an electro-optic display having a plurality of display pixels. Each of the display pixels is associated with a display transistor. The method includes the following steps in order. A first voltage is applied to a first display transistor associated with a first display pixel of the plurality of display pixels. The first voltage is applied during at least one frame of a driving waveform. A second voltage is applied to the first display transistor associated with the first display pixel. The second voltage has a non-zero amplitude less than the first voltage and is applied during the last frame of the driving waveform.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 23, 2023
    Inventors: Aaron CHEN, Teck Ping SIM, Kenneth R. CROUNSE, Karl Raymond AMUNDSON
  • Patent number: 11568786
    Abstract: There are provided methods for driving an electro-optic display having a plurality of display pixels, a such method includes detecting a white-to-white graytone transition on a first pixel; and determining whether a threshold number of cardinal neighbors of the first pixel are not making a graytone transition from white to white, or if the first pixel is a color pixel, and apply a first waveform.
    Type: Grant
    Filed: May 30, 2021
    Date of Patent: January 31, 2023
    Assignee: E Ink Corporation
    Inventor: Kenneth R. Crounse
  • Patent number: 11568827
    Abstract: A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods includes updating a display having a plurality of display pixels with a first image, identifying display pixels with edge artifacts after the first image update, and storing the identified display pixels information in a memory. In particular, the methods are effective for minimizing edge ghosting when a pixel of an active matrix electrophoretic display undergoes a white to white transition or a black to black transition during an update between first and second images.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: January 31, 2023
    Assignee: E Ink Corporation
    Inventors: Teck Ping Sim, Yuval Ben-Dov, Joanna F. Au, Kenneth R. Crounse
  • Patent number: 11557260
    Abstract: A method for driving electro-optic displays so as to reduce visible artifacts are described. Such methods include driving extra pixels where the boundary between a driven and undriven area would otherwise lead to artifact by providing paired sets of driving instructions, allowing the undriven area to be driven while maintain the desired (undriven) optical state.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 17, 2023
    Assignee: E Ink Corporation
    Inventors: Kenneth R. Crounse, Yuval Ben-Dov, Stephen J. Telfer, Jaya Kumar
  • Patent number: 11545065
    Abstract: An electro-optic display having a plurality of pixels is driven from a first image to a second image using a first drive scheme, and then from the second image to a third image using a second drive scheme different from the first drive scheme and having at least one impulse differential gray level having an impulse potential different from the corresponding gray level in the first drive scheme. Each pixel which is in an impulse differential gray level in the second image is driven from the second image to the third image using a modified version of the second drive scheme which reduces its impulse differential The subsequent transition from the third image to a fourth image is also conducted using the modified second drive scheme but after a limited number of transitions using the modified second drive scheme, all subsequent transitions are conducted using the unmodified second drive scheme.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: January 3, 2023
    Assignee: E Ink Corporation
    Inventors: Demetrious Mark Harrington, Kenneth R. Crounse, Karl Raymond Amundson, Teck Ping Sim, Matthew J. Aprea
  • Publication number: 20220415268
    Abstract: A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods include (a) applying a first drive scheme to a non-zero minor proportion of the pixels of the display and a second drive scheme to the remaining pixels, the pixels using the first drive scheme being changed at each transition; (b) using two different drive schemes on different groups of pixels so that pixels in differing groups undergoing the same transition will not experience the same waveform; (c) applying either a balanced pulse pair or a top-off pulse to a pixel undergoing a white-to-white transition and lying adjacent a pixel undergoing a visible transition; (d) driving extra pixels where the boundary between a driven and undriven area would otherwise fall along a straight line; and (e) driving a display with both DC balanced and DC imbalanced drive schemes, maintaining an impulse bank value for the DC imbalance and modifying transitions to reduce the impulse bank value.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Inventors: Karl Raymond AMUNDSON, Matthew J. APREA, Kenneth R. CROUNSE, Demetrious Mark HARRINGTON, Jason LIN, Theodore A. SJODIN, Chia-Chen SU
  • Publication number: 20220413323
    Abstract: An electrophoretic medium includes a fluid, a plurality of light scattering charged particles having a first polarity, and a first, second, and third set of particles, each set having a color different from each other set. The first and second particles may have a second polarity opposite to the first polarity, and the mobility of the third set of particles is less than half of the mobility of the light scattering particles, the first set of charged particles, and the second set of charged particles.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Stephen J. TELFER, Eugene BZOWEJ, Kenneth R. CROUNSE, John L. MARSHALL, Brandon MACDONALD, Ziyan WU, Lee YEZEK
  • Patent number: 11527216
    Abstract: A system for rendering color images on an electro-optic display when the electro-optic display has a color gamut with a limited palette of primary colors, and/or the gamut is poorly structured (i.e., not a spheroid or obloid). The system uses an iterative process to identify the best color for a given pixel from a palette that is modified to diffuse the color error over the entire electro-optic display. The system additionally accounts for variations in color that are caused by cross-talk between nearby pixels.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: December 13, 2022
    Assignee: E Ink Corporation
    Inventor: Kenneth R. Crounse
  • Publication number: 20220375418
    Abstract: A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods includes updating a display having a plurality of display pixels with a first image, identifying display pixels with edge artifacts after the first image update, and storing the identified display pixels information in a memory. In particular, the methods are effective for minimizing edge ghosting when a pixel of an active matrix electrophoretic display undergoes a white to white transition or a black to black transition during an update between first and second images.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 24, 2022
    Inventors: Teck Ping SIM, Yuval BEN-DOV, Joanna F. AU, Kenneth R. CROUNSE
  • Patent number: 11460722
    Abstract: An electrophoretic medium includes a fluid, a plurality of light scattering charged particles having a first polarity, and a first, second, and third set of particles, each set having a color different from each other set. The first and second particles may have a second polarity opposite to the first polarity, and the mobility of the third set of particles is less than half of the mobility of the light scattering particles, the first set of charged particles, and the second set of charged particles.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: October 4, 2022
    Assignee: E Ink Corporation
    Inventors: Stephen J. Telfer, Eugene Bzowej, Kenneth R. Crounse, John L. Marshall, Brandon Macdonald, Ziyan Wu, Lee Yezek
  • Patent number: 11462183
    Abstract: A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods include (a) applying a first drive scheme to a non-zero minor proportion of the pixels of the display and a second drive scheme to the remaining pixels, the pixels using the first drive scheme being changed at each transition; (b) using two different drive schemes on different groups of pixels so that pixels in differing groups undergoing the same transition will not experience the same waveform; (c) applying either a balanced pulse pair or a top-off pulse to a pixel undergoing a white-to-white transition and lying adjacent a pixel undergoing a visible transition; (d) driving extra pixels where the boundary between a driven and undriven area would otherwise fall along a straight line; and (e) driving a display with both DC balanced and DC imbalanced drive schemes, maintaining an impulse bank value for the DC imbalance and modifying transitions to reduce the impulse bank value.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: October 4, 2022
    Assignee: E Ink Corporation
    Inventors: Karl Raymond Amundson, Matthew J. Aprea, Kenneth R. Crounse, Demetrious Mark Harrington, Jason Lin, Theodore A. Sjodin, Chia-Chen Su