Patents by Inventor Kenneth R. Duffy

Kenneth R. Duffy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954718
    Abstract: An embodiment of the present disclosure a system and method for extracting items of information, such as wine from a wine list of a commercial establishment.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: April 9, 2024
    Assignee: MWG, LLC
    Inventors: Jonathan S. Kirst, John R. Kirst, John Edward Duffy, Xiaowei Li, Kenneth E Waln
  • Patent number: 11870459
    Abstract: Described is a decoder suitable for use with any communication or storage system. The described decoder has a modular decoder hardware architecture capable of implementing a noise guessing process and due to its dependency only on noise, the decoder design is independent of any encoder, thus making it a universal decoder. Hence, the decoder architecture described herein is agnostic to any coding scheme.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 9, 2024
    Assignees: Massachusetts Institute of Technology, National University of Ireland Maynooth, Trustees of Boston University
    Inventors: Amit Solomon, Muriel Medard, Kenneth R. Duffy, Rabia Tugce Yazicigil Kirby, Vaibhav Bansal, Wei An
  • Patent number: 11838040
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: December 5, 2023
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy, Amit Solomon, Alejandro Cohen
  • Patent number: 11784666
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: October 10, 2023
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy
  • Patent number: 11652498
    Abstract: The present application concerns an iterative bit-flipping decoding method using symbol or bit reliabilities, which is a variation of GRAND decoding and is denoted by ordered reliability bits GRAND (ORBGRAND). It comprises receiving a plurality of demodulated symbols from a noisy transmission channel; and receiving for the plurality of demodulated symbols, information indicating a ranked order of reliability of at least the most unreliable information contained within the plurality of demodulated symbols. A sequence of putative noise patterns from a most likely pattern of noise affecting the plurality of symbols through one or more successively less likely noise patterns is provided.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: May 16, 2023
    Assignee: National University of Ireland, Maynooth
    Inventor: Kenneth R. Duffy
  • Publication number: 20220393702
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Applicants: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel MEDARD, Kenneth R. DUFFY
  • Publication number: 20220376725
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 24, 2022
    Applicants: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel MEDARD, Kenneth R. DUFFY, Amit SOLOMON, Alejandro COHEN
  • Publication number: 20220302931
    Abstract: The present application concerns an iterative bit-flipping decoding method using symbol or bit reliabilities, which is a variation of GRAND decoding and is denoted by ordered reliability bits GRAND (ORBGRAND). It comprises receiving a plurality of demodulated symbols from a noisy transmission channel; and receiving for the plurality of demodulated symbols, information indicating a ranked order of reliability of at least the most unreliable information contained within the plurality of demodulated symbols. A sequence of putative noise patterns from a most likely pattern of noise affecting the plurality of symbols through one or more successively less likely noise patterns is provided.
    Type: Application
    Filed: October 21, 2020
    Publication date: September 22, 2022
    Applicant: MAYNOOTH UNIVERSITY
    Inventor: Kenneth R. Duffy
  • Patent number: 11451247
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: September 20, 2022
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy
  • Patent number: 11431368
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: August 30, 2022
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy, Amit Solomon, Alejandro Cohen
  • Publication number: 20220270712
    Abstract: Systems and methods of the present disclosure enable automated analyses of a biological sample using a processing system by receiving signal profiles of each allele of a set of cells in the sample. A set of allele vectors are determined based on a mapping of the magnitude of the measurement of each signal profile at each locus to an index location. A set of cell vectors is generated by concatenating each allele vector of each cell. A cluster model is utilized to generate clusters of the signal profiles based on the set of cell vectors to represent contributors. A first likelihood of a target contributor matching a contributor and a second likelihood of the target contributor not matching any contributor are determined by comparing the target signal profile to each cluster. A likelihood ratio is determined from a ratio of the first likelihood and the second likelihood.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 25, 2022
    Inventors: Catherine M. Grgicak, Desmond S. Lun, Kenneth R. Duffy
  • Publication number: 20220014214
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 13, 2022
    Inventors: Muriel Medard, Kenneth R. Duffy
  • Publication number: 20210384918
    Abstract: Described is a decoder suitable for use with any communication or storage system. The described decoder has a modular decoder hardware architecture capable of implementing a noise guessing process and due to its dependency only on noise, the decoder design is independent of any encoder, thus making it a universal decoder. Hence, the decoder architecture described herein is agnostic to any coding scheme.
    Type: Application
    Filed: April 8, 2021
    Publication date: December 9, 2021
    Inventors: Amit SOLOMON, Muriel MEDARD, Kenneth R. DUFFY, Rabia Tugce Yazicigil KIRBY, Vaibhav BANSAL, Wei AN
  • Publication number: 20210288685
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 16, 2021
    Inventors: Muriel MEDARD, Kenneth R. DUFFY, Amit SOLOMON, Alejandro COHEN
  • Patent number: 11095314
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: August 17, 2021
    Assignees: Massachusetts Institute of Technology, National University of Ireland Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy
  • Patent number: 10944610
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. In various embodiments, soft information is used to generate a symbol mask that identifies the collection of symbols that are suspected to differ from the channel input, and only these are subject to guessing. This decoder embodies or approximates maximum likelihood (optionally with soft information) decoding for any code. In some embodiments, the decoder tests abounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 9, 2021
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy
  • Publication number: 20200358643
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. In various embodiments, soft information is used to generate a symbol mask that identifies the collection of symbols that are suspected to differ from the channel input, and only these are subject to guessing. This decoder embodies or approximates maximum likelihood (optionally with soft information) decoding for any code. In some embodiments, the decoder tests abounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted.
    Type: Application
    Filed: December 20, 2018
    Publication date: November 12, 2020
    Inventors: Muriel MEDARD, Kenneth R. DUFFY
  • Publication number: 20200186172
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 11, 2020
    Inventors: Muriel MEDARD, Kenneth R. DUFFY
  • Patent number: 10608673
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 31, 2020
    Assignees: Massachusetts Institute of Technology, NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH
    Inventors: Muriel Medard, Kenneth R. Duffy
  • Patent number: 10608672
    Abstract: Devices and methods described herein decode a sequence of coded symbols by guessing noise. In various embodiments, noise sequences are ordered, either during system initialization or on a periodic basis. Then, determining a codeword includes iteratively guessing a new noise sequence, removing its effect from received data symbols (e.g. by subtracting or using some other method of operational inversion), and checking whether the resulting data are a codeword using a codebook membership function. This process is deterministic, has bounded complexity, asymptotically achieves channel capacity as in convolutional codes, but has the decoding speed of a block code. In some embodiments, the decoder tests a bounded number of noise sequences, abandoning the search and declaring an erasure after these sequences are exhausted. Abandonment decoding nevertheless approximates maximum likelihood decoding within a tolerable bound and achieves channel capacity when the abandonment threshold is chosen appropriately.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 31, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH
    Inventors: Muriel Medard, Kenneth R. Duffy, Jiange Li