Patents by Inventor Kenneth R. Newton

Kenneth R. Newton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240038520
    Abstract: In some examples, an ion funnel-based collision cell may include an ion funnel entrance section formed by a plurality of adjacently disposed entrance members. Each entrance member of at least one pair of the adjacently disposed entrance members may include a successively larger opening to form a tapered or profiled entrance for ions entering the ion funnel-based collision cell. An insulation material may be disposed adjacent to or in contact with each entrance member of the at least one pair of the adjacently disposed entrance members to prevent, outside of each successively larger opening, flow of gas between each entrance member of the at least one pair of the adjacently disposed entrance members.
    Type: Application
    Filed: June 30, 2023
    Publication date: February 1, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Kenneth R. NEWTON, Tong CHEN, Stephen ZANON
  • Publication number: 20240038519
    Abstract: In some examples, a multipole section-based ion funnel may include an ion funnel section formed by at least one pair of adjacently disposed members. A first member of the at least one pair of adjacently disposed members may include a pole structure. A second member of the at least one pair of adjacently disposed members may include a pole structure that is engageable with the pole structure of the first member to form a multipole structure.
    Type: Application
    Filed: June 30, 2023
    Publication date: February 1, 2024
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Kenneth R. NEWTON, Tong CHEN, Stephen ZANON
  • Publication number: 20230343574
    Abstract: A quadrupole transmitting window applied by a quadrupole mass filter is characterized by a method that utilizes the noise band of a transmitted chemical noise ion signal. The mass filter may be utilized in a mass spectrometry (MS) system.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Kai Chen, Kenneth R. Newton, Christian Wisner-Carlson
  • Publication number: 20230126290
    Abstract: An ion source may include an ionization chamber to be maintained at atmospheric-pressure. The ion source may further include a reduced-pressure chamber to be maintained at sub-atmospheric pressure, and an ion transfer device comprising an inlet in the ionization chamber and an outlet in the reduced-pressure chamber. The ion transfer device may define an ion path from the inlet to the outlet. The ion transfer device may be positioned to emit ions and neutral gas molecules from the outlet as an expanding beam comprising a low-gas density zone enveloped by a high-gas density region that includes a gas density that is higher than the low-gas density zone. The ion source may be utilized, for example, for ion mobility spectrometry (IMS), mass spectrometry (MS), and hybrid IM-MS.
    Type: Application
    Filed: September 16, 2022
    Publication date: April 27, 2023
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Ruwan T. KURULUGAMA, Kenneth R. NEWTON
  • Patent number: 11217437
    Abstract: Electron capture dissociation (ECD) is performed by transmitting an electron beam through a cell along an electron beam axis, generating plasma in the cell by energizing a gas with the electron beam, and transmitting an ion beam through the interaction region along an ion beam axis to produce fragment ions. Generating the plasma forms an interaction region in the cell spaced from and not intersecting the electron beam, and including low-energy electrons effective for ECD. The ion beam axis may be at an angle to and offset from the ion beam axis, such that the electron beam does not intersect the ion beam.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: January 4, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Kenneth R. Newton, Nigel P. Gore, Mark Denning
  • Publication number: 20190287775
    Abstract: Electron capture dissociation (ECD) is performed by transmitting an electron beam through a cell along an electron beam axis, generating plasma in the cell by energizing a gas with the electron beam, and transmitting an ion beam through the interaction region along an ion beam axis to produce fragment ions. Generating the plasma forms an interaction region in the cell spaced from and not intersecting the electron beam, and including low-energy electrons effective for ECD. The ion beam axis may be at an angle to and offset from the ion beam axis, such that the electron beam does not intersect the ion beam.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 19, 2019
    Inventors: Kenneth R. Newton, Nigel P. Gore, Mark Denning
  • Patent number: 10103014
    Abstract: An ion transfer device for transferring ions from one chamber to another, reduced-pressure chamber includes an inlet section and a main capillary section. The inlet section has a lumen and the main capillary section has a bore communicating with the lumen. The inside diameter of the lumen is less than that of the bore. The inlet section may be removable from an installation site separately from the main capillary section. The ion transfer device may be utilized, for example, in an atmospheric-pressure interface of a mass spectrometer.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: October 16, 2018
    Assignee: Agilent Technologies, Inc.
    Inventor: Kenneth R. Newton
  • Publication number: 20180068840
    Abstract: An ion transfer device for transferring ions from one chamber to another, reduced-pressure chamber includes an inlet section and a main capillary section. The inlet section has a lumen and the main capillary section has a bore communicating with the lumen. The inside diameter of the lumen is less than that of the bore. The inlet section may be removable from an installation site separately from the main capillary section. The ion transfer device may be utilized, for example, in an atmospheric-pressure interface of a mass spectrometer.
    Type: Application
    Filed: September 5, 2016
    Publication date: March 8, 2018
    Inventor: Kenneth R. Newton
  • Patent number: 9536723
    Abstract: A field terminator includes a plurality of electrode plates positioned around a guide axis at a radial distance therefrom. The plates generate a quadrupole DC field such that a polarity on each plate is opposite to a polarity on the plates adjacent thereto. The plates may be positioned at an axial end of a quadrupole ion guide such as a mass filter. In addition to an RF field, the ion guide may generate a quadrupole DC field. The DC field of the plates may be opposite in polarity to that of the ion guide.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 3, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: James L. Bertsch, Kenneth R. Newton
  • Patent number: 9449804
    Abstract: An ion guide generates a first RF field of Nth order where N is an integer equal to or greater than 2, and a second RF field of 2Nth order superimposed on the first RF field. The first and second RF fields may be generated by respective first and second sets of electrodes. Another ion guide may include a converging entrance section followed by an exit section. The converging section may have a hyperbolic profile. A hyperbolic profile may be presented by electrodes having a twisted configuration relative to an ion guide axis.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: September 20, 2016
    Assignee: Agilent Technologies, Inc.
    Inventors: James L. Bertsch, Kenneth R. Newton, Layne Howard
  • Publication number: 20160133452
    Abstract: An ion guide generates a first RF field of Nth order where N is an integer equal to or greater than 2, and a second RF field of 2Nth order superimposed on the first RF field. The first and second RF fields may be generated by respective first and second sets of electrodes. Another ion guide may include a converging entrance section followed by an exit section. The converging section may have a hyperbolic profile. A hyperbolic profile may be presented by electrodes having a twisted configuration relative to an ion guide axis.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 12, 2016
    Inventors: James L. Bertsch, Kenneth R. Newton, Layne Howard
  • Patent number: 9105454
    Abstract: An electron capture dissociation (ECD) apparatus includes a plasma source for generating plasma. Analyte ions are exposed to the plasma in an ECD interaction region, either inside or outside the plasma source. The apparatus may include one or more devices for refining the plasma in preparation for interaction with the analyte ions. Refining may entail removing unwanted species from the plasma, such as photons, metastable particles, neutral particles, and/or high-energy electrons unsuitable for ECD, and/or controlling a density of low-energy electrons in the plasma.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: August 11, 2015
    Assignee: Agilent Technologies, Inc.
    Inventors: Trygve Ristroph, Mark Denning, Kenneth R. Newton, Guthrie Partridge
  • Publication number: 20150122985
    Abstract: An electron capture dissociation (ECD) apparatus includes a plasma source for generating plasma. Analyte ions are exposed to the plasma in an ECD interaction region, either inside or outside the plasma source. The apparatus may include one or more devices for refining the plasma in preparation for interaction with the analyte ions. Refining may entail removing unwanted species from the plasma, such as photons, metastable particles, neutral particles, and/or high-energy electrons unsuitable for ECD, and/or controlling a density of low-energy electrons in the plasma.
    Type: Application
    Filed: September 11, 2014
    Publication date: May 7, 2015
    Inventors: Trygve Ristroph, Mark Denning, Kenneth R. Newton, Guthrie Partridge
  • Publication number: 20140034827
    Abstract: A mass spectrum is acquired by accumulating parent ions in an ion trap, ejecting parent ions of a selected m/z ratio into a collision cell, producing fragment ions from the parent ions, and analyzing the fragment ions in a mass analyzer. The other parent ions remain stored in the ion trap, and thus the process may be repeated by mass-selectively scanning parent ions from the ion trap. In this manner, the full mass range of parent ions or any desired subset of the full mass range may be analyzed without significant ion loss or undue time expenditure. The collision cell may provide a large ion acceptance aperture and relatively smaller ion emission aperture. The collision cell may pulse ions out to the mass analyzer. The mass analyzer may be a time-of-flight analyzer. The timing of pulsing of ions out from the collision cell may be matched with the timing of pulsing of ions into the time-of-flight analyzer.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 6, 2014
    Applicant: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Kenneth R. Newton
  • Patent number: 8637816
    Abstract: A mass spectrum is acquired by accumulating parent ions in an ion trap, ejecting parent ions of a selected m/z ratio into a collision cell, producing fragment ions from the parent ions, and analyzing the fragment ions in a mass analyzer. The other parent ions remain stored in the ion trap, and thus the process may be repeated by mass-selectively scanning parent ions from the ion trap. In this manner, the full mass range of parent ions or any desired subset of the full mass range may be analyzed without significant ion loss or undue time expenditure. The collision cell may provide a large ion acceptance aperture and relatively smaller ion emission aperture. The collision cell may pulse ions out to the mass analyzer. The mass analyzer may be a time-of-flight analyzer. The timing of pulsing of ions out from the collision cell may be matched with the timing of pulsing of ions into the time-of-flight analyzer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 28, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Kenneth R. Newton
  • Patent number: 7378649
    Abstract: In some embodiments, a method of optimizing operating parameters of an analytical instrument (e.g. lens voltages of a mass spectrometer) includes steps taken to minimize the method duration in the presence of substantial instrument noise and/or drift. Some methods include selecting a best point between a default instrument parameter set (vector) and a most-recent optimum parameter set; building a starting simplex at the selected best point location in parameter-space; and advancing the simplex to find an optimal parameter vector. The best simplex points are periodically re-measured, and the resulting readings are used to replace and/or average previous readings. The algorithm convergence speed may be adjusted by reducing simplex contractions gradually. The method may operate using all-integer parameter values, recognize parameter values that are out of an instrument range, and operate under the control of the instrument itself rather than an associated control computer.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: May 27, 2008
    Assignee: Varian, Inc.
    Inventors: Kenneth R. Newton, August Specht