Patents by Inventor Kenneth S. Barron

Kenneth S. Barron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7671792
    Abstract: A global positioning system receiver with a system and method for parallel synchronization. The novel receiver includes a correlator having plural demodulator channels for receiving a signal from a first satellite, and a processor for processing the signal from the first satellite using a plurality of the channels. The processor includes a parallel synchronization process for synchronizing the receiver with the signal. In an illustrative embodiment, the processor is adapted to instruct the plurality of channels to track the signal from the first satellite in parallel, each channel using a different timing hypothesis. Only the channel determined to have the correct timing is retained for tracking the satellite. For the first satellite only, the processor also demodulates the hand-over word and determines a GPS transmit time. The parallel synchronization process is then repeated for subsequent satellites in turn.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: March 2, 2010
    Assignee: Raytheon Company
    Inventors: Kenneth S. Barron, Jeff M. Horslund
  • Patent number: 7071871
    Abstract: A low power GPS tracking system. The novel system includes a first circuit adapted to collect samples of a signal for a first predetermined length of time and in accordance therewith generate an output signal, and a second circuit for cyclically powering on the first circuit for the first predetermined length of time and powering off the first circuit, or a portion thereof, for a second predetermined length of time. In an illustrative embodiment, the first circuit includes a receiver adapted to receive a GPS signal and output GPS data samples, and a processor adapted to calculate a navigation solution from the GPS data samples using an integrate and dump signal processing technique.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 4, 2006
    Assignee: Raytheon Company
    Inventors: Jeff M. Horslund, Kenneth S. Barron, Bernard J. Gil, Christopher D. Collinvitti
  • Patent number: 6141371
    Abstract: A jamming suppression system which includes a plurality of receivers for receiving electromagnetic radiations and a separate notch filter coupled to each receiver for filtering selected frequencies from electromagnetic radiations received by each of the receivers. In accordance with one embodiment of the invention, a spatial combiner responsive to the outputs of each of the notch filters extracts essentially jam-free information from the electromagnetic radiations. In accordance with a second embodiment of the invention, a plurality of spatial combiners, each responsive to the outputs of each of the notch filters, extracts essentially jam-free information from the electromagnetic radiations. The notch filters are adaptive notch filters for on-line selection of their filtering action. One of the notch filters is a master filter and the remainder of the notch filters are slave filters controlled by the master filter.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: October 31, 2000
    Assignee: Raytheon Company
    Inventors: Jerry D. Holmes, Kenneth S. Barron, Anthony Reid
  • Patent number: 6005888
    Abstract: A method, executed in a microprocessor, for providing a shift-and-add mask, M=m.sub.1, m.sub.2, . . . , m.sub.N-1, m.sub.N, for a pseudo-noise sequence generator ("PNSG"). The PNSG generates a first pseudo-noise ("PN") code, and has N stages, each stage being at one of two states. The PNSG also has an associated shifter for generating a shifted PN code which is the same code as the first PN code, but delayed by K chips. The shifted PN code is generated as the inner product of the shift-and-add mask with the states of the stages of the PNSG. According to the inventive method, a value of K is provided, and it is determined whether K is 0. If K is 0, M is provided such that m.sub.N =1 and, for all n.noteq.N, m.sub.n =0. However, if K is not 0, it is determined whether K is greater than N. If K is greater than N, the remainder, R, of the division D.sup.K-1 /f(D), is determined, whereD.sup.K-1 =(m.sub.1 c.sub.1 +m.sub.2 c.sub.2 + . . . +m.sub.N c.sub.N)+(m.sub.2 c.sub.1 +m.sub.3 c.sub.2 + . . . +m.sub.N c.sub.
    Type: Grant
    Filed: July 8, 1997
    Date of Patent: December 21, 1999
    Assignee: Texas Instruments Incorporated
    Inventor: Kenneth S. Barron
  • Patent number: 5926070
    Abstract: Apparatus for providing a reference pseudo-noise ("PN") sequence, and for providing a secondary PN sequence shifted with respect to the reference PN sequence by a number of chips that can be sequentially shifted. The apparatus includes a first pseudo-noise sequence generator ("PNSG"), the PNSG generating the reference PN code, having N stages, each stage being at one of two states, and having a feedback loop from the output of the PNSG, the value on the feedback loop being stored in each stage 1, 2, 3, . . . N, after being multiplied by a constant associated with the stage, C1, C2, C3, . . . CN, respectively, and the result added to the value in the previous stage, with "0" being deemed to be the value in the stage previous to the first stage, and then stored in the stage. Also provided is a mask generator/shifter comprising a second PNSG having N stages, wherein the N stages of the second PNSG may be loaded with a shift-and-add mask, M=m.sub.1, m.sub.2, . . . m.sub.N-1, m.sub.N.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: July 20, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Kenneth S. Barron, Y. K. Lee, William V. Crean
  • Patent number: 5835528
    Abstract: A method for setting the state of a clock-driven pseudo-noise sequence generator ("PNSG") having N stages, after the clock has been inhibited for a predetermined number K of clock cycles, to the state S.sub.2 (D) the PNSG would have been had the clock not been inhibited, based on the state S.sub.1 (D) the PNSG is in at the time inhibition of the clock is commenced. The method involves performing the following steps. First, a previously determined value, a(D)=the remainder of D.sup.Kq /f(D), is stored, wherein D is the delay transform operator, q=2.sup.N -2, and f(D)=c.sub.1 D.sup.N +c.sub.2 D.sup.N-1 + . . . +c.sub.N D+1. The product S.sub.2 (D)=a(D)S.sub.1 (D) is formed, wherein S.sub.1 (D)=s.sub.11 D.sup.N-1 +s.sub.12 D.sup.N-2 + . . . +s.sub.1N D.sup.0. If the degree of S.sub.2 (D) does not exceed N-1, the state bit values for S.sub.2 (D) are inferred from the product. However, if the degree of S.sub.2 (D) exceeds N-1, the product S.sub.2 (D) is first reduced by f(D), and then the state bit values for S.
    Type: Grant
    Filed: July 8, 1997
    Date of Patent: November 10, 1998
    Assignee: Texas Instruments Incorporated
    Inventor: Kenneth S. Barron