Patents by Inventor Kenneth Syracuse

Kenneth Syracuse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7375496
    Abstract: It is known that reforming implantable defibrillator capacitors at least partially restores and preserves their charging efficiency. An industry-recognized standard is to reform implantable capacitors by pulse discharging the connected electrochemical cell about once every three months throughout the useful life of the medical device. A Li/SVO cell typically powers such devices. The present invention relates to methodologies for significantly minimizing, if not entirely eliminating, the occurrence of voltage delay and irreversible Rdc growth in the about 35 % to 70 % DOD region by subjecting Li/SVO cells to novel discharge regimes. At the same time, the connected capacitors in the cardiac defibrillator are reformed to maintain them at their rated breakdown voltages.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: May 20, 2008
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Hong Gan, Noelle Waite, Kenneth Syracuse, Esther S. Takeuchi
  • Patent number: 7092830
    Abstract: The present invention is directed to a method for analyzing the tail-end behavior of a lithium cell having a solid cathode. The tail of a longer-term accelerated discharge data (ADD) test is estimated from the tail of two shorter-term ADD tests. This is accomplished by first comparing the discharge tails of shorter-term ADD tests and determining angles or rotation that correspond to Rdc growth, and then trending rotation angles versus time to reach a give DoD. For example, the 18-month and 36-month ADD test tails are used to estimate the ADD test tail of a similarly constructed cell subjected to a longer-term ADD test, for example a 48-month ADD test.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: August 15, 2006
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Kenneth Syracuse, Noelle Waite, Hong Gan, Esther S. Takeuchi
  • Patent number: 6982543
    Abstract: It is known that reforming implantable defibrillator capacitors at least partially restores and preserves their charging efficiency. An industry-recognized standard is to reform implantable capacitors by pulse discharging the connected electrochemical cell about once every three months throughout the useful life of the medical device. A Li/SVO cell typically powers such devices. The present invention relates to methodologies for accurately determining the precise boundaries of voltage delay and irreversible Rdc growth region in the about 25% to 70% DOD region so that more frequent pulse discharging for the purpose of cell reform is confined to the limits of the region. At the same time, the connected capacitors in the cardiac defibrillator are reformed to maintain them at their rated breakdown voltages.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: January 3, 2006
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Kenneth Syracuse, Noelle Waite, Hong Gan, Esther S. Takeuchi
  • Publication number: 20050216212
    Abstract: The present invention is directed to a method for analyzing the tail-end behavior of a lithium cell having a solid cathode. The tail of a longer-term accelerated discharge data (ADD) test is estimated from the tail of two shorter-term ADD tests. This is accomplished by first comparing the discharge tails of shorter-term ADD tests and determining angles or rotation that correspond to Rdc growth, and then trending rotation angles versus time to reach a give DoD. For example, the 18-month and 36-month ADD test tails are used to estimate the ADD test tail of a similarly constructed cell subjected to a longer-term ADD test, for example a 48-month ADD test.
    Type: Application
    Filed: March 23, 2005
    Publication date: September 29, 2005
    Inventors: Kenneth Syracuse, Noelle Waite, Hong Gan, Esther Takeuchi
  • Patent number: 6930468
    Abstract: It is known that reforming implantable defibrillator capacitors at least partially restores and preserves their charging efficiency. An industry-recognized standard is to reform implantable capacitors by pulse discharging the connected electrochemical cell about once every three months throughout the useful life of the medical device. A Li/SVO cell typically powers such devices. The present invention relates to methodologies for significantly minimizing, if not entirely eliminating, the occurrence of voltage delay and irreversible Rdc growth in the about 25% to 70% DOD region by subjecting Li/SVO cells to novel discharge regimes. At the same time, the connected capacitors in the cardiac defibrillator are reformed to maintain them at their rated breakdown voltages.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: August 16, 2005
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Kenneth Syracuse, Noelle Waite, Hong Gan, Esther S. Takeuchi
  • Publication number: 20040161660
    Abstract: It is known that reforming implantable defibrillator capacitors at least partially restores and preserves their charging efficiency. An industry-recognized standard is to reform implantable capacitors by pulse discharging the connected electrochemical cell about once every three months throughout the useful life of the medical device. A Li/SVO cell typically powers such devices. The present invention relates to methodologies for accurately determining the precise boundaries of voltage delay and irreversible Rdc growth region in the about 25% to 70% DOD region so that more frequent pulse discharging for the purpose of cell reform is confined to the limits of the region. At the same time, the connected capacitors in the cardiac defibrillator are reformed to maintain them at their rated breakdown voltages.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 19, 2004
    Inventors: Kenneth Syracuse, Noelle Waite, Hong Gan, Esther S. Takeuchi
  • Publication number: 20040051504
    Abstract: It is known that reforming implantable defibrillator capacitors at least partially restores and preserves their charging efficiency. An industry-recognized standard is to reform implantable capacitors by pulse discharging the connected electrochemical cell about once every three months throughout the useful life of the medical device. A Li/SVO cell typically powers such devices. The present invention relates to methodologies for significantly minimizing, if not entirely eliminating, the occurrence of voltage delay and irreversible Rdc growth in the about 25% to 70% DOD region by subjecting Li/SVO cells to novel discharge regimes. At the same time, the connected capacitors in the cardiac defibrillator are reformed to maintain them at their rated breakdown voltages.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 18, 2004
    Inventors: Kenneth Syracuse, Noelle Waite, Hong Gan, Esther S. Takeuchi
  • Publication number: 20040036448
    Abstract: It is known that reforming implantable defibrillator capacitors at least partially restores and preserves their charging efficiency. An industry-recognized standard is to reform implantable capacitors by pulse discharging the connected electrochemical cell about once every three months throughout the useful life of the medical device. A Li/SVO cell typically powers such devices. The present invention relates to methodologies for significantly minimizing, if not entirely eliminating, the occurrence of voltage delay and irreversible Rdc growth in the about 35% to 70% DOD region by subjecting Li/SVO cells to novel discharge regimes. At the same time, the connected capacitors in the cardiac defibrillator are reformed to maintain them at their rated breakdown voltages.
    Type: Application
    Filed: August 22, 2003
    Publication date: February 26, 2004
    Inventors: Hong Gan, Noelle Waite, Kenneth Syracuse, Esther S. Takeuchi