Patents by Inventor Kenneth W. Cowan

Kenneth W. Cowan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130036753
    Abstract: A system for improving the thermal efficiency of a thermal control loop in which refrigerant after compression and condensation is applied to an evaporator employs a subsidiary counter-current heat exchange intercepting refrigerant flow to maintain the quality of the refrigerant by exchanging thermal energy between the input flow and the output flow from the evaporator. The same principle is effective, with particular advantage when small connections have to be made, in systems using mixed phase media and using the concept of direct energy transfer with saturated fluid.
    Type: Application
    Filed: October 15, 2012
    Publication date: February 14, 2013
    Inventors: William W. COWANS, Glenn W. ZUBILLAGA, Kenneth W. COWANS
  • Patent number: 8337660
    Abstract: A plasma reactor for processing a workpiece includes a reactor chamber, an electrostatic chuck within the chamber having a top surface for supporting a workpiece and having indentations in the top surface that form enclosed gas flow channels whenever covered by a workpiece resting on the top surface. The reactor further includes thermal control apparatus thermally coupled to the electrostatic chuck, an RF plasma bias power generator coupled to apply RF power to the electrostatic chuck, a pressurized gas supply of a thermally conductive gas, a controllable gas valve coupling the pressurized gas supply to the indentations to facilitate filling the channels with the thermally conductive gas for heat transfer between a backside of a workpiece and the electrostatic chuck at a heat transfer rate that is a function of the pressure against the backside of the workpiece of the thermally conductive gas.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: December 25, 2012
    Assignee: B/E Aerospace, Inc.
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 8329586
    Abstract: A method of processing a workpiece in a plasma reactor having an electrostatic chuck for supporting the workpiece within a reactor chamber, the method including circulating a coolant through a refrigeration loop that includes an evaporator inside the electrostatic chuck, while pressurizing a workpiece-to-chuck interface with a thermally conductive gas, sensing conditions in the chamber including temperature near the workpiece and simulating heat flow through the electrostatic chuck in a thermal model of the chuck based upon the conditions.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: December 11, 2012
    Assignees: Applied Materials, Inc., B/E Aerospace, Inc.
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 8291719
    Abstract: A system for improving the thermal efficiency of a thermal control loop in which refrigerant after compression and condensation is applied to an evaporator employs a subsidiary counter-current heat exchange intercepting refrigerant flow to maintain the quality of the refrigerant by exchanging thermal energy between the input flow and the output flow from the evaporator. The same principle is effective, with particular advantage when small connections have to be made, in systems using mixed phase media and using the concept of direct energy transfer with saturated fluid.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 23, 2012
    Assignee: BE Aerospace, Inc.
    Inventors: William W. Cowans, Glenn W. Zubillaga, Kenneth W. Cowans
  • Patent number: 8240160
    Abstract: In a thermal control system of the type employing a two phase refrigerant that is first compressed and then is divided into a variable mass flow of refrigerant into a hot pressurized gas form and a differential remainder flow of cooled vapor derived from condensation and then thermal expansion, transitions between different temperature levels are enhanced by incremental variations of the mass flow at different control rates.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: August 14, 2012
    Assignee: BE Aerospace, Inc.
    Inventors: Kenneth W. Cowans, Matthew Antoniou, Glenn Zubillaga, William W. Cowans
  • Patent number: 8221580
    Abstract: A plasma reactor with a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface, and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck, a thermal model capable of simulating heat transfer between the evaporator and the surface based upon measurements from the temperature sensor and an agile control processor coupled to the thermal model and governing the backside gas pressure source in response to predictions from the model of changes in the selected pressure that would bring the temperature measured by the sensor closer to a desired temperature.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: July 17, 2012
    Assignees: Applied Materials, Inc., BE Aerospace, Inc.
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 8092639
    Abstract: A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 10, 2012
    Assignee: Advanced Thermal Sciences Corporation
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 8021521
    Abstract: A method of processing a workpiece in a plasma reactor having an electrostatic chuck for holding a workpiece in a chamber of the reactor includes providing a thermally conductive gas under pressure between a backside of the workpiece and a top surface of the electrostatic chuck, controlling the temperature of the electrostatic chuck, defining a desired workpiece temperature, measuring a current workpiece temperature or temperature related to the workpiece temperature and inputting the measured temperature to a thermal model representative of the electrostatic chuck. The method further includes determining from the thermal model a change in the pressure of the thermally conductive gas that would at least reduce the difference between the measured temperature and the desired temperature, and changing the pressure of the thermally conductive gas in accordance with the change determined from the thermal model.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: September 20, 2011
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, Williams W. Cowans, Glenn W. Zubillaga, Isaac Millian
  • Patent number: 7988872
    Abstract: In a plasma reactor having an electrostatic chuck with an electrostatic chuck top surface for supporting a workpiece, thermal transfer medium flow channels in the interior of the electrostatic chuck, a method for controlling temperature of the workpiece during plasma processing includes circulating thermal transfer medium through the thermal transfer medium flow passages and supplying a thermally conductive gas between the workpiece and the electrostatic chuck top surface, and changing thermal transfer medium thermal conditions of thermal transfer medium flowing in the thermal transfer medium flow channels so as to change the temperature of the electrostatic chuck at a first rate limited by the thermal mass of the electrostatic chuck. The method further includes changing the backside gas pressure of the thermally conductive gas so as to change the temperature of the workpiece at a second rate faster than the first rate.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 2, 2011
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Paul Lukas Brillhart, Richard Fovell, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7765820
    Abstract: A system and method for controlling the temperature of a process tool uses the vaporizable characteristic of a refrigerant that is provided in direct heat exchange relation with the process tool. Pressurized refrigerant is provided as both condensed liquid and in gaseous state. The condensed liquid is expanded to a vaporous mix, and the gaseous refrigerant is added to reach a target temperature determined by its pressure. Temperature corrections can thus be made very rapidly by gas pressure adjustments. The process tool and the operating parameters will usually require that the returning refrigerant be conditioned and processed for compatibility with the compressor and other units, so that cycling can be continuous regardless of thermal demands and changes.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 3, 2010
    Assignee: Advanced Thermal Sciences, Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Publication number: 20100076611
    Abstract: In a temperature control system using a controlled mix of high temperature pressurized gas and a cooled vapor/liquid flow of the same medium to cool a thermal load to a target temperature in a high energy environment, particular advantages are obtained in precision and efficiency by passing at least a substantial percentage of the cooled vapor/liquid flow through the thermal load directly, and thereafter mixing the output with a portion of the pressurized gas flow. This “post load mixing” approach increases the thermal transfer coefficient, improves control and facilities target temperature change. Ad added mixing between the cooled expanded flow and a lesser flow of pressurized gas also is used prior to the input to the thermal load. A further feature, termed a remote “Line Box”, enables transport of the separate flows of the two phase medium through a substantial spacing from pressurizing and condensing units without undesired liquefaction in the transport lines.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 25, 2010
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn Zubillaga
  • Patent number: 7661460
    Abstract: A compact heat exchanger for interchanging thermal energy between at least two fluids, one of which fluids may be a refrigerant in hot or cold form or in a liquid/vapor phase, and another of which fluids is a thermal transfer fluid. The heat exchanger may incorporate an internal heating element. The thermal transfer fluid is transported between two concentric metal tubes, while the refrigerant moves along a tubing helically wrapped about or between the tubes and is in thermal contact therewith.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: February 16, 2010
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans
  • Publication number: 20090248212
    Abstract: In a thermal control system of the type employing a two phase refrigerant that is first compressed and then is divided into a variable mass flow of refrigerant into a hot pressurized gas form and a differential remainder flow of cooled vapor derived from condensation and then thermal expansion, transitions between different temperature levels are enhanced by incremental variations of the mass flow at different control rates.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Inventors: Kenneth W. Cowans, Matthew Antoniou, Glenn Zubillaga, William W. Cowans
  • Publication number: 20090105889
    Abstract: A system for improving the thermal efficiency of a thermal control loop in which refrigerant after compression and condensation is applied to an evaporator employs a subsidiary counter-current heat exchange intercepting refrigerant flow to maintain the quality of the refrigerant by exchanging thermal energy between the input flow and the output flow from the evaporator. The same principle is effective, with particular advantage when small connections have to be made, in systems using mixed phase media and using the concept of direct energy transfer with saturated fluid.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 23, 2009
    Inventors: William W. Cowans, Glenn W. Zubillaga, Kenneth W. Cowans
  • Publication number: 20080319587
    Abstract: A system and method for controlling the temperature of a process tool uses the vaporizable characteristic of a refrigerant that is provided in direct heat exchange relation with the process tool. Pressurized refrigerant is provided as both condensed liquid and in gaseous state. The condensed liquid is expanded to a vaporous mix, and the gaseous refrigerant is added to reach a target temperature determined by its pressure. Temperature corrections can thus be made very rapidly by gas pressure adjustments. The process tool and the operating parameters will usually require that the returning refrigerant be conditioned and processed for compatibility with the compressor and other units, so that cycling can be continuous regardless of thermal demands and changes.
    Type: Application
    Filed: August 22, 2008
    Publication date: December 25, 2008
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7442275
    Abstract: In many processes used in fabricating semiconductors the wafer is seated on the top surface of a pedestal and heated in a high energy process step, such as plasma etching. The pedestal, chuck or platen may be cooling but the wafer gradually heats until the process can no longer continue. Where large, e.g. 300 mm diameter, wafers are being processed the temperature level across the wafer is difficult to maintain substantially constant. In this system and method the lateral temperature distribution is equalized by a heat sink structure in a chamber immediately under the wafer support on top of the pedestal. A number of spatially distributed wicking posts extend downwardly from a layer of wicking material across the top of the chamber, into a pool of a vaporizable liquid. At hot spots, vaporized liquid is generated and transported to adjacent condensation posts extending up from the liquid. The system thus passively extracts heat to equalize temperatures while recirculating liquid and assuring adequate supply.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: October 28, 2008
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans
  • Patent number: 7437717
    Abstract: Techniques for gathering and tracking build information are described. Builds are registered initially. When a test execution is performed, a matching build is automatically determined from those previously registered builds as matching the software under test for a particular session. This information is tabulated in a database in accordance with additional software and hardware or platform information describes the environment in which a program executes. The platform information includes software component information and system configuration information uniquely identifying a particular instance of an environment. Data stored in the database is then analyzed and available for performing queries, for example, such as regarding code volatility and determining testing associated with a particular build.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: October 14, 2008
    Assignee: Compuware Corporation
    Inventors: Kenneth W. Cowan, Michael Strickman
  • Patent number: 7428726
    Abstract: Techniques for gathering and tracking build information are described. Builds are registered initially. When a test execution is performed, a matching build is automatically determined from those previously registered builds as matching the software under test for a particular session. This information is tabulated in a database in accordance with additional software and hardware or platform information describes the environment in which a program executes. The platform information includes software component information and system configuration information uniquely identifying a particular instance of an environment. Data stored in the database is then analyzed and available for performing queries, for example, such as regarding code volatility and determining testing associated with a particular build.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: September 23, 2008
    Assignee: Compuware Corporation
    Inventors: Kenneth W. Cowan, Michael Strickman
  • Patent number: 7415835
    Abstract: A system and method for controlling the temperature of a process tool uses the vaporizable characteristic of a refrigerant that is provided in direct heat exchange relation with the process tool. Pressurized refrigerant is provided as both condensed liquid and in gaseous state. The condensed liquid is expanded to a vaporous mix, and the gaseous refrigerant is added to reach a target temperature determined by its pressure. Temperature corrections can thus be made very rapidly by gas pressure adjustments. The process tool and the operating parameters will usually require that the returning refrigerant be conditioned and processed for compatibility with the compressor and other units, so that cycling can be continuous regardless of thermal demands and changes.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: August 26, 2008
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7337625
    Abstract: A system and method for maintaining the temperature of a thermal transfer fluid at a selectable level within a wide temperature range, so as to operate a process tool in a chosen mode employing at lease two cascaded stages, each operating with a different fluid in a separate refrigeration cycle. By interrelating energy transfers between parts of upper and lower stages, thermal efficiency is maximized and a smooth continuum of temperature levels can be provided. The refrigerants advantageously have vaporization points below and above ambient, for upper and lower stages respectively, and employs the upper stage for a constant refrigeration capacity, controlling the final temperature with the lower stage. The system allows for a further extension of range because the thermal transfer fluid can be heated for some process tool modes as the refrigeration cycles are run at low loads.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: March 4, 2008
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans