Patents by Inventor Kennith K. Leong

Kennith K. Leong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972897
    Abstract: According to one configuration, a fabricator receives magnetic permeable material and fabricates an apparatus to include a multi-dimensional arrangement of electrically conductive paths to extend through the magnetic permeable material. Each of the electrically conductive paths is a respective inductive path.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 30, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Luca Peluso, Matthias J. Kasper, Kennith K. Leong, Gerald Deboy
  • Publication number: 20230318459
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 11716026
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: August 1, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20230095628
    Abstract: A power supply includes a first (main) power converter and a second (auxiliary) power converter disposed in parallel with the first power converter to produce an output voltage to power a dynamic load. The second power converter includes a primary inductive path magnetically coupled to a secondary inductive path. A controller controls a flow of first current through the primary inductive path of the second power converter to control flow of second current supplied by the secondary inductive path to the dynamic load. During steady state conditions, the first power converter produces the output voltage while the second power converter is deactivated. During transient load conditions, the second power converter provides current boost capability to maintain a magnitude of the output voltage within a desired range.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Darryl Tschirhart
  • Patent number: 11562845
    Abstract: According to one configuration, an inductor device includes a first electrically conductive path; a second electrically conductive path, the first electrically conductive path electrically isolated from the second electrically conductive path; first material, the first material operative to space the first electrically conductive path with respect to the second electrically conductive path; and second material. The second material has a substantially higher magnetic permeability than the first material. An assembly of the first electrically conductive path, the second electrically conductive path, and the first material resides in a core of the second material.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 24, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Matthias J. Kasper, Kennith K. Leong, Luca Peluso
  • Publication number: 20220367111
    Abstract: According to one configuration, a fabricator receives magnetic permeable material and fabricates an apparatus to include a multi-dimensional arrangement of electrically conductive paths to extend through the magnetic permeable material. Each of the electrically conductive paths is a respective inductive path.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Luca Peluso, Matthias J. Kasper, Kennith K. Leong, Gerald DEBOY
  • Publication number: 20220367109
    Abstract: According to one configuration, a fabricator fabricates a core of a circuit component to include magnetic permeable material. The fabricator further produces the circuit component to include multiple electrically conductive paths extending through the core of the magnetic permeable material. In one arrangement, the multiple electrically conductive paths include a first electrically conductive path and a second electrically conductive path. The fabricator fabricates the circuit component and, more specifically, the core of the magnetic permeable material to include at least one cutaway portion operative to reduce inductive coupling between the first electrically conductive path and the second electrically conductive path disposed in the core.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Luca Peluso, Matthias J. Kasper, Kennith K. Leong, Gerald DEBOY
  • Publication number: 20220276685
    Abstract: According to one configuration, an inductor device includes a core fabricated from multiple different types of magnetically permeable material. The inductor device includes an electrically conductive path extending through the core. A magnetic permeability of the core varies in magnitude depending on a distance with respect to the electrically conductive path.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Luca Peluso, Gerald Deboy, Matthias J. Kasper, Kennith K. Leong
  • Patent number: 11165347
    Abstract: A power supply includes a power source, a primary inductive path, and a secondary inductive path. The primary inductive path coupled to receive input current from the power source. The secondary inductive path is magnetically coupled to the primary inductive path to adjust current flow through the primary inductive path, the primary inductive path operable to produce an output voltage.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 2, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20210257924
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 11050355
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: June 29, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20210118604
    Abstract: According to one configuration, an inductor device includes a first electrically conductive path; a second electrically conductive path, the first electrically conductive path electrically isolated from the second electrically conductive path; first material, the first material operative to space the first electrically conductive path with respect to the second electrically conductive path; and second material. The second material has a substantially higher magnetic permeability than the first material. An assembly of the first electrically conductive path, the second electrically conductive path, and the first material resides in a core of the second material.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Matthias J. Kasper, Kennith K. Leong, Luca Peluso
  • Publication number: 20210119538
    Abstract: A power supply includes a power source, a primary inductive path, and a secondary inductive path. The primary inductive path coupled to receive input current from the power source. The secondary inductive path is magnetically coupled to the primary inductive path to adjust current flow through the primary inductive path, the primary inductive path operable to produce an output voltage.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Debby
  • Publication number: 20210118601
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20210119552
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 10707765
    Abstract: A power converter circuit includes a transformer. The transformer includes a primary winding and a secondary winding. A primary circuit is coupled to the primary winding. A secondary circuit is coupled to the secondary winding. The primary circuit and the secondary circuit are referenced to different ground voltage potentials that may vary with respect to each other. During operation, the primary circuit controls input of energy to the primary winding of the transformer. The secondary circuit receives the energy through the secondary winding and uses it to produce an output voltage to power a load. The secondary circuit receives and/or generates state information at one of multiple different levels. The secondary circuit controls a flow of current through the secondary winding to convey the state information as feedback to the primary circuit. The primary circuit analyzes a voltage at a node of the primary winding to receive the feedback.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: July 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Arash Pake Talei, Gerald Deboy, Giuseppe Bernacchia
  • Patent number: 10135346
    Abstract: A power converter circuit includes a transformer. The transformer includes a primary winding and a secondary winding. The power converter circuit uses energy conveyed from the primary winding of the transformer through the secondary winding of the transformer to produce an output voltage to power a load. Control circuitry of the power converter circuit initiates conveying a portion of the received energy through the secondary winding back through the primary winding to control a magnitude of the output voltage. For example, if the magnitude of the output voltage is above a desired setpoint value, such as due to a transient load condition or change in the setpoint of the output voltage, the control circuitry reduces the magnitude of the output voltage by conveying excess energy from an output capacitor (that stores the output voltage) through the secondary winding to the primary winding.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: November 20, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerald Deboy, Kennith K. Leong, Giuseppe Bernacchia, Arash Pake Talei
  • Patent number: 10122287
    Abstract: A power converter circuit includes a transformer. The transformer includes a primary winding and a secondary winding. A primary circuit is coupled to the primary winding. A secondary circuit is coupled to the secondary winding. The primary circuit and the secondary circuit are referenced to different ground voltage potentials that may vary with respect to each other. During operation, the primary circuit controls input of energy to the primary winding of the transformer. The secondary circuit receives the energy through the secondary winding and uses it to produce an output voltage to power a load. The secondary circuit receives and/or generates state information at one of multiple different levels. The secondary circuit controls a flow of current through the secondary winding to convey the state information as feedback to the primary circuit. The primary circuit analyzes a voltage at a node of the primary winding to receive the feedback.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: November 6, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Arash Pake Talei, Gerald Deboy, Giuseppe Bernacchia
  • Patent number: 10069428
    Abstract: A power converter circuit includes a transformer. The transformer includes a primary winding and a secondary winding. A primary circuit is coupled to the primary winding. A secondary circuit is coupled to the secondary winding. The primary circuit and the secondary circuit are referenced to different ground voltage potentials that may vary with respect to each other. During operation, the primary circuit controls input of energy to the primary winding of the transformer. The secondary circuit receives the energy through the secondary winding and uses it to produce an output voltage to power a load. The secondary circuit receives and/or generates state information at one of multiple different levels. The secondary circuit controls a flow of current through the secondary winding to convey the state information as feedback to the primary circuit. The primary circuit analyzes a voltage at a node of the primary winding to receive the feedback.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: September 4, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Arash Pake Talei, Gerald Deboy, Giuseppe Bernacchia
  • Publication number: 20170244327
    Abstract: A power converter circuit includes a transformer. The transformer includes a primary winding and a secondary winding. A primary circuit is coupled to the primary winding. A secondary circuit is coupled to the secondary winding. The primary circuit and the secondary circuit are referenced to different ground voltage potentials that may vary with respect to each other. During operation, the primary circuit controls input of energy to the primary winding of the transformer. The secondary circuit receives the energy through the secondary winding and uses it to produce an output voltage to power a load. The secondary circuit receives and/or generates state information at one of multiple different levels. The secondary circuit controls a flow of current through the secondary winding to convey the state information as feedback to the primary circuit. The primary circuit analyzes a voltage at a node of the primary winding to receive the feedback.
    Type: Application
    Filed: June 23, 2016
    Publication date: August 24, 2017
    Inventors: Kennith K. Leong, Arash Pake Talei, Gerald Deboy, Giuseppe Bernacchia