Patents by Inventor Kensuke Honma

Kensuke Honma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030165393
    Abstract: An outer periphery of an output shaft (23) integral with a rotor (31) of an expander of a vane-type operated by a high-pressure vapor is supported at its opposite ends by a static-pressure bearing (25) mounted at one end thereof in a floated state provided by a liquid film of a pressurized liquid-phase fluid supplied from a pressurized liquid-phase fluid feed bore (129) through a pressurized liquid-phase fluid passage (W5), and by a static-pressure bearing (25) mounted at the other end thereof in a floated state provided by a liquid film of a pressurized liquid-phase fluid supplied from a pressurized liquid-phase fluid feed bore (129) through pressurized liquid-phase fluid passages (W6, W7, W9, W10. W11 and W12). Vanes (42) supported radially in the rotor (31) for reciprocal movement are supported in floated states by a liquid film of a pressurized liquid-phase fluid supplied through pressurized liquid-phase fluid passages (W14) extending radially outwards within the rotor (31).
    Type: Application
    Filed: February 27, 2003
    Publication date: September 4, 2003
    Inventors: Hiroyuki Niikura, Hiroyoshi Taniguchi, Tsuyoshi Baba, Kensuke Honma, Hiroyuki Horimura, Tsuneo Endoh, Yasunobu Kawakami, Yasunari Kimura, Ryuji Sano, Kenji Matsumoto
  • Publication number: 20030106316
    Abstract: A waste heat recovery system for an internal combustion engine is provided, which is configured as follows. The internal combustion engine (1) generates first and second raised temperature portions (202, 204) by operation thereof. A degree of raised temperature is higher at the first raised temperature portion (202) than at the second raised temperature portion (204). A first evaporating portion (205) of evaporating device (3) generates a first vapor with raised temperature by using the first raised temperature portion (202). A second evaporating portion (206) generates a second vapor with raised temperature by using the second raised temperature portion (204) and with a lower pressure than the first vapor. A first energy converting portion (207) of a displacement type expander (4) converts an expansion energy of the first vapor into a mechanical energy. A second energy converting portion (208) converts an expansion energy of the second vapor into a mechanical energy.
    Type: Application
    Filed: November 14, 2002
    Publication date: June 12, 2003
    Inventors: Tsuneo Endoh, Haruhiko Komatsu, Masahiko Minemi, Tsuyoshi Baba, Kensuke Honma
  • Publication number: 20030084866
    Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against a non-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.
    Type: Application
    Filed: December 18, 2002
    Publication date: May 8, 2003
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Tsuneo Endoh, Kensuke Honma
  • Publication number: 20030084867
    Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against anon-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.
    Type: Application
    Filed: December 18, 2002
    Publication date: May 8, 2003
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Tsuneo Endoh, Kensuke Honma
  • Publication number: 20030084868
    Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against an on-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.
    Type: Application
    Filed: December 18, 2002
    Publication date: May 8, 2003
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Tsuneo Endoh, Kensuke Honma
  • Patent number: 6513482
    Abstract: Rotary type fluid machine includes a casing 7, a rotor 31 and a plurality of vane-piston units U1-U12 which are disposed in a radiate arrangement on the rotor 31. Each of the vane-piston units U1-U12 has a vane 42 sliding in a rotor chamber 14 and a piston 41 placed in abutment against a non-slide side of the vane 42. When it functions as an expanding machine 4, the expansion of a high pressure gas is used to operate the pistons 41 thereby to rotate the rotor 31 via vanes 42 and the expansion of a low pressure gas caused by a pressure reduction in the high pressure gas is used to rotate the rotor 31 via the vanes 41. On the other hand, when it functions as a compressing machine, the rotation of rotor 31 is used to supply a low pressure air to the side of pistons 41 via vanes 42 and further, the pistons 41 are operated by the vanes 42 to convert the low pressure air to the high pressure air.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: February 4, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Tsuneo Endoh, Kensuke Honma
  • Patent number: 5811058
    Abstract: A heat-resistant magnesium alloy containing, based on the total weight of the alloy, 4.5-10 wt. % of aluminum, 0.1-3 wt. % of calcium, 1-3 wt. % of a rare earth element and 0.2-1 wt. % of manganese and having a composition that the contents of aluminum, calcium and the rare earth element satisfy the relationship of the following expression (1):1.66+1.33 Ca+0.37 RE.ltoreq.Al.ltoreq.2.77+1.33 Ca+0.74 REwherein Ca, RE and Al represent the weight percentages of Ca, at least one rare earth element and aluminum contained in the alloy, respectively, in the relationship.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: September 22, 1998
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Tsuyoshi Baba, Kensuke Honma, Masao Ichikawa
  • Patent number: 5658366
    Abstract: A heat- and abrasion-resistant aluminum alloy having a grain size of the matrix of .alpha.-aluminum in the alloy not more than 1,000 nm; a grain size of an intermetallic compounds contained in the alloy of not more than 500 nm; and 0.5 to 20% by volume of ceramic particles in the range of 1.5 to 10 .mu.m in particle size and dispersed in the alloy. By this composition, the stress concentration due to the ceramic particles is reduced. Furthermore, because the powders bind well with each other, the heat resistance and abrasion resistance are compatibly improved without decreasing toughness and ductility.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: August 19, 1997
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kenji Okamoto, Hiroyuki Horimura, Masahiko Minemi, Kensuke Honma