Patents by Inventor Kensuke KOMORI

Kensuke KOMORI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11799367
    Abstract: A rotor manufacturing method is a method that allows magnetized magnets inserted in second magnet holes of a second rotor core to be inserted, while retaining magnetism, into first magnet holes of a first rotor core. This method includes a placing step of placing the second rotor core on a first end surface, in a stack thickness direction, of the first rotor core such that the second magnet holes overlap the first magnet holes, and an extruding step of extruding the magnetized magnets from the second magnet holes toward the first magnet holes using a non-magnetic jig.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: October 24, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinya Sano, Kensuke Komori
  • Publication number: 20230318423
    Abstract: In an axial gap motor, a rotor includes a plurality of rotor cores fixed in a circumferential direction of a rotor base, and a stator includes a plurality of stator cores fixed in a circumferential direction of a stator base, and coils wound around the stator cores. End faces of each of the rotor cores and end faces of the corresponding stator core are opposed to each other while being exposed to each other.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiu Kanada, Kazuaki Haga, Toshimitsu Takahashi, Mayumi Takazawa, Takuya Nomura, Shinya Sano, Takeshi Tomonaga, Hisanori Koma, Yasuhide Yagyu, Kensuke Komori, Tatsuhiko Hirano, Masaaki Ito, Hiroaki Wakimoto
  • Patent number: 11711004
    Abstract: In an axial gap motor, a rotor includes a plurality of rotor cores fixed in a circumferential direction of a rotor base, and a stator includes a plurality of stator cores fixed in a circumferential direction of a stator base, and coils wound around the stator cores. End faces of each of the rotor cores and end faces of the corresponding stator core are opposed to each other while being exposed to each other.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: July 25, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiu Kanada, Kazuaki Haga, Toshimitsu Takahashi, Mayumi Takazawa, Takuya Nomura, Shinya Sano, Takeshi Tomonaga, Hisanori Koma, Yasuhide Yagyu, Kensuke Komori, Tatsuhiko Hirano, Masaaki Ito, Hiroaki Wakimoto
  • Patent number: 11594946
    Abstract: An axial gap motor is configured such that: a rotor includes a plurality of rotor cores fixed along the circumferential direction of a rotor pedestal, and a plurality of magnets; and a stator includes a plurality of stator cores fixed along the circumferential direction of a stator pedestal, and coils wound around the stator cores. A first divided surface of each rotor core faces an N-pole of a corresponding magnet, and a second divided surface of the each rotor core faces an S-pole of a corresponding magnet. Respective divided surfaces of the rotor cores are placed to face respective divided surfaces of the stator cores across the magnets.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: February 28, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuaki Haga, Keiu Kanada, Kensuke Komori, Masaaki Ito
  • Publication number: 20220203440
    Abstract: Provided is a rare earth magnet that allows suppressing deterioration of magnetic properties and a method for manufacturing the same. The rare earth magnet of the present disclosure includes a magnet body containing a rare earth element R1, a transition metal element T, and boron B and includes a main phase. A region in the vicinity of a corner portion of the magnet body of a constituent surface constituting a surface of the magnet body is a processed surface on which a removal process has been performed, and a region closer to a center than the region in the vicinity of the corner portion of the constituent surface is a non-processed surface on which the removal process is not performed.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 30, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mayumi TAKAZAWA, Kazuaki HAGA, Daisuke ICHIGOZAKI, Masaaki ITO, Hisanori KOMA, Shinya SANO, Kensuke KOMORI, Keiu KANADA
  • Publication number: 20220085702
    Abstract: A rotor manufacturing method is a method that allows magnetized magnets inserted in second magnet holes of a second rotor core to be inserted, while retaining magnetism, into first magnet holes of a first rotor core. This method includes a placing step of placing the second rotor core on a first end surface, in a stack thickness direction, of the first rotor core such that the second magnet holes overlap the first magnet holes, and an extruding step of extruding the magnetized magnets from the second magnet holes toward the first magnet holes using a non-magnetic jig.
    Type: Application
    Filed: August 4, 2021
    Publication date: March 17, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinya SANO, Kensuke KOMORI
  • Patent number: 11177725
    Abstract: Provided is an IPM motor that is strong and has high output. An IPM motor has a rotor that includes a rotor core as a laminate of a plurality of metal foil pieces made of a soft magnetic material that are stacked in a direction of a rotation axis of the rotor. The rotor core has a plurality of through-holes that penetrates through the rotor core in the direction of the rotation axis, the plurality of through-holes including through-holes embedding magnets. The rotor core includes inner bridges and outer bridges. At least one of the inner bridges and the outer bridges of the rotor core is made of an amorphous soft magnetic material, and other parts are made of a nanocrystal soft magnetic material.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 16, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Fumitaka Yoshinaga, Akira Yamashita, Airi Kamimura, Kazuaki Haga, Kensuke Komori
  • Publication number: 20210328490
    Abstract: In an axial gap motor, a rotor includes a plurality of rotor cores fixed in a circumferential direction of a rotor base, and a stator includes a plurality of stator cores fixed in a circumferential direction of a stator base, and coils wound around the stator cores. End faces of each of the rotor cores and end faces of the corresponding stator core are opposed to each other while being exposed to each other.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 21, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiu KANADA, Kazuaki HAGA, Toshimitsu TAKAHASHI, Mayumi TAKAZAWA, Takuya NOMURA, Shinya SANO, Takeshi TOMONAGA, Hisanori KOMA, Yasuhide YAGYU, Kensuke KOMORI, Tatsuhiko HIRANO, Masaaki ITO, Hiroaki WAKIMOTO
  • Publication number: 20210328489
    Abstract: An axial gap motor is configured such that: a rotor includes a plurality of rotor cores fixed along the circumferential direction of a rotor pedestal, and a plurality of magnets; and a stator includes a plurality of stator cores fixed along the circumferential direction of a stator pedestal, and coils wound around the stator cores. A first divided surface of each rotor core faces an N-pole of a corresponding magnet, and a second divided surface of the each rotor core faces an S-pole of a corresponding magnet. Respective divided surfaces of the rotor cores are placed to face respective divided surfaces of the stator cores across the magnets.
    Type: Application
    Filed: March 17, 2021
    Publication date: October 21, 2021
    Inventors: Kazuaki HAGA, Keiu KANADA, Kensuke Komori, Masaaki ITO
  • Patent number: 10944301
    Abstract: Provided is a laminate having a reduced loss ratio while maintaining a high space factor. The present disclosure relates to a laminate for use in a core, comprising: a strip laminate composed of soft magnetic metal strips; and an insulating layer provided on a surface of the strip laminate, wherein each one layer of the soft magnetic metal strips has a thickness of 100 ?m or less, each one layer of the soft magnetic metal strips has an oxide film on their surfaces, the strip laminate is composed of at least two layers of the soft magnetic metal strip, and the strip laminate and the insulating layer are alternately disposed.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 9, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kensuke Komori, Shingo Fubuki, Shinya Urata, Yoshitaka Maeda
  • Patent number: 10892089
    Abstract: The present disclosure provides a method for producing a magnetic component that enables efficient processing of an amorphous soft magnetic material or a nanocrystalline soft magnetic material. The method for producing a magnetic component comprising an amorphous soft magnetic material or nanocrystalline soft magnetic material comprises: a step of preparing a stacked body comprising a plurality of plate-shaped amorphous soft magnetic materials or nanocrystalline soft magnetic materials; a step of heating at least a portion of shearing in the stacked body to a temperature equal to or higher than the crystallization temperature of the soft magnetic materials; and a step of shearing the stacked body at the portion of shearing after the step of heating.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: January 12, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Airi Kamimura, Kazuaki Haga, Kensuke Komori, Katsuhiko Tatebe, Shingo Fubuki
  • Patent number: 10855122
    Abstract: Provided is a stator for rotating electrical machine that can avoid the sagging of teeth stacked at the distal ends under the self-weight. A stator core is a laminate of metal foil members stacked in a direction of a rotation axis of the rotating electrical machine. Each tooth has a pair of side walls facing the neighboring teeth in the circumferential direction. The stator includes a pair of insulating reinforcing members so as to become a bridge between the corresponding tooth and a part of the yoke and sandwich the corresponding tooth from both sides in the direction of the rotation axis while exposing the pair of side walls; insulating fixing members, each fixing member fixing the corresponding pair of reinforcing members to the corresponding tooth while wrapping around the pair of reinforcing members and tooth; and coils formed as distributed windings at the teeth fixed with the fixing members.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kensuke Komori, Hisamitsu Toshida, Kazuaki Haga
  • Publication number: 20200224286
    Abstract: After an first heat treatment step, an ambient temperature of a stack is held so that the stack is kept in a temperature range that allows the stack to be crystallized by heating the end of the stack to a second temperature range in the second heat treatment step; and a following expression (1) is satisfied, where Q1 represents an amount of heat required to heat the stack to the first temperature range in the first heat treatment step, Q2 represents an amount of heat that is applied to the stack when heating the end of the stack to the second temperature range in the second heat treatment step, Q3 represents an amount of heat that is released during crystallization of the stack, and Q4 represents an amount of heat required to heat the entire stack to the crystallization start temperature Q1+Q2+Q3?Q4??(1).
    Type: Application
    Filed: December 23, 2019
    Publication date: July 16, 2020
    Inventors: Yu TAKANEZAWA, Tomohiro TAKAO, Hideki MANABE, Shinichi HIRAMATSU, Kensuke KOMORI
  • Publication number: 20190386548
    Abstract: Provided is an IPM motor that is strong and has high output. An IPM motor has a rotor that includes a rotor core as a laminate of a plurality of metal foil pieces made of a soft magnetic material that are stacked in a direction of a rotation axis of the rotor. The rotor core has a plurality of through-holes that penetrates through the rotor core in the direction of the rotation axis, the plurality of through-holes including through-holes embedding magnets. The rotor core includes inner bridges and outer bridges. At least one of the inner bridges and the outer bridges of the rotor core is made of an amorphous soft magnetic material, and other parts are made of a nanocrystal soft magnetic material.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 19, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Fumitaka YOSHINAGA, Akira YAMASHITA, Airi KAMIMURA, Kazuaki HAGA, Kensuke KOMORI
  • Publication number: 20190379246
    Abstract: Provided is a laminate having a reduced loss ratio while maintaining a high space factor. The present disclosure relates to a laminate for use in a core, comprising: a strip laminate composed of soft magnetic metal strips; and an insulating layer provided on a surface of the strip laminate, wherein each one layer of the soft magnetic metal strips has a thickness of 100 ?m or less, each one layer of the soft magnetic metal strips has an oxide film on their surfaces, the strip laminate is composed of at least two layers of the soft magnetic metal strip, and the strip laminate and the insulating layer are alternately disposed.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 12, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kensuke KOMORI, Shingo FUBUKI, Shinya URATA, Yoshitaka MAEDA
  • Publication number: 20190267854
    Abstract: Provided is a stator for rotating electrical machine that can avoid the sagging of teeth stacked at the distal ends under the self-weight. A stator core is a laminate of metal foil members stacked in a direction of a rotation axis of the rotating electrical machine. Each tooth has a pair of side walls facing the neighboring teeth in the circumferential direction. The stator includes a pair of insulating reinforcing members so as to become a bridge between the corresponding tooth and a part of the yoke and sandwich the corresponding tooth from both sides in the direction of the rotation axis while exposing the pair of side walls; insulating fixing members, each fixing member fixing the corresponding pair of reinforcing members to the corresponding tooth while wrapping around the pair of reinforcing members and tooth; and coils formed as distributed windings at the teeth fixed with the fixing members.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 29, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kensuke KOMORI, Hisamitsu TOSHIDA, Kazuaki HAGA
  • Publication number: 20190181731
    Abstract: An object of the present disclosure is to provide a production method for a stator in which a breakage of the stator core can be prevented when coils are mounted thereon. The present embodiment is a production method for a stator that includes a stator core having a tooth and includes a coil wound around the tooth. The method includes: a step of preparing a stacked body which has the tooth and in which a plurality of plate-like soft magnetic materials each including an amorphous structure are stacked; a step of mounting the coil on the tooth; and a step of, after the coil is mounted, heating the stacked body to a temperature equal to or higher than a crystallization temperature of the soft magnetic materials.
    Type: Application
    Filed: November 20, 2018
    Publication date: June 13, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Fumitaka YOSHINAGA, Kazuaki HAGA, Kensuke KOMORI, Kiyotaka ONODERA
  • Publication number: 20190156999
    Abstract: The present disclosure provides a method for producing a magnetic component that enables efficient processing of an amorphous soft magnetic material or a nanocrystalline soft magnetic material. The method for producing a magnetic component comprising an amorphous soft magnetic material or nanocrystalline soft magnetic material comprises: a step of preparing a stacked body comprising a plurality of plate-shaped amorphous soft magnetic materials or nanocrystalline soft magnetic materials; a step of heating at least a portion of shearing in the stacked body to a temperature equal to or higher than the crystallization temperature of the soft magnetic materials; and a step of shearing the stacked body at the portion of shearing after the step of heating.
    Type: Application
    Filed: October 1, 2018
    Publication date: May 23, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Airi KAMIMURA, Kazuaki HAGA, Kensuke KOMORI, Katsuhiko TATEBE, Shingo FUBUKI
  • Publication number: 20160097110
    Abstract: Provided is a method for manufacturing a rare-earth magnet capable of manufacturing a rare-earth magnet having excellent magnetic characteristics from magnetic powder that is prepared by liquid rapid-quenching and including both of nano-crystalline substance and amorphous substance as well. A method for manufacturing a rare-earth magnet includes: a first step of rapidly quenching of molten metal that is represented by a composition formula of (R1)x(Rh)yTzBsMt (R1 denotes one type or more of light rare-earth element containing Y, Rh denotes a heavy rare-earth element containing at least one type of Dy and Tb, T denotes transition metal containing at least one type of Fe, Ni and Co, B denotes boron, M denotes at least one type of Ga, Al and Cu, and 27?x?44, 0?y?10, z=100-x-y-s-t, 0.75?s?3.
    Type: Application
    Filed: September 21, 2015
    Publication date: April 7, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke ICHIGOZAKI, Kensuke KOMORI, Daisuke SAKUMA, Takaaki TAKAHASHI