Patents by Inventor Kent A. Byerly

Kent A. Byerly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9835481
    Abstract: Methods, systems and devices for estimating a parameter of interest in a borehole. The apparatus may include a displacement device configured for displacement responsive to the parameter of interest and environmental noise; a detector array configured to provide information comprising a first signal and a second signal both relating to the displacement; and at least one processor configured to mitigate effects of the environmental noise on the information by determining correlated portions of each corresponding signal representative of effects of common mode elements of the environmental noise on each corresponding signal. The displacement device may be an optical displacement device configured to receive a first electromagnetic beam with a first value of a beam property and a second electromagnetic beam with a second value of the beam property, which comprises a displacement element configured for displacement responsive to the parameter of interest and the environmental noise.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: December 5, 2017
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Carl M. Edwards, Sebastian Csutak, Robert W. Adams, Kent Byerly
  • Publication number: 20150377661
    Abstract: Methods, systems and devices for estimating a parameter of interest in a borehole. The apparatus may include a displacement device configured for displacement responsive to the parameter of interest and environmental noise; a detector array configured to provide information comprising a first signal and a second signal both relating to the displacement; and at least one processor configured to mitigate effects of the environmental noise on the information by determining correlated portions of each corresponding signal representative of effects of common mode elements of the environmental noise on each corresponding signal. The displacement device may be an optical displacement device configured to receive a first electromagnetic beam with a first value of a beam property and a second electromagnetic beam with a second value of the beam property, which comprises a displacement element configured for displacement responsive to the parameter of interest and the environmental noise.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Carl M. Edwards, Sebastian Csutak, SR., Robert W. Adams, Kent Byerly
  • Patent number: 8055446
    Abstract: A method for processing magnetotelluric data to identify subterranean deposits is provided for. The data comprise the amplitude of alternating magnetic or electrical fields recorded over time in at least two vector components at one or more locations in an area of interest. Amplitude pulses are identified in the data, wherein the pulses are time segments comprising an amplitude peak meeting defined threshold criteria in at least one vector component. The pulses are filtered at a set of predetermined frequencies to separate amplitude data at each frequency from the remainder of the amplitude data in the pulses. The frequencies correspond to subterranean depths over a range of interest. Differential impedances ?Z of the pulses at each frequency at each location are then statistically analyzed to determine a value correlated to the resistance of the earth at each frequency. The resistance values are indicative of the presence or absence of deposits at the corresponding subterranean depth at the location.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: November 8, 2011
    Inventor: Kent A. Byerly
  • Publication number: 20080091354
    Abstract: Methods for processing magnetotelluric data to identify subterranean deposits are provided for. The data comprise the amplitude of alternating magnetic or electrical fields recorded over time in at least two vector components at one or more locations in an area of interest. Amplitude pulses are identified in the data, wherein the pulses are time segments comprising an amplitude peak meeting defined threshold criteria in at least one vector component. The pulses are filtered at a set of predetermined frequencies to separate amplitude data at each frequency from the remainder of the amplitude data in the pulses. The frequencies correspond to subterranean depths over a range of interest. Differential impedances ?Z of the pulses at each frequency at each location are then statistically analyzed to determine a value correlated to the resistance of the earth at each frequency. The resistance values are indicative of the presence or absence of deposits at the corresponding subterranean depth at the location.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 17, 2008
    Inventor: Kent A. Byerly
  • Patent number: 6950747
    Abstract: A method for processing magnetotelluric signals to identify subterranean deposits is provided for. The methods comprise obtaining magnetotelluric data from an area of interest. The magnetotelluric data comprises the amplitude of magnetotelluric signals recorded over time at one or more defined locations in the area of interest. The data for each location then is filtered through a set of frequency filters. The frequency filters correspond to subterranean depths over a range of interest. Amplitude peaks in the filtered data then are identified and analyzed to determine a value correlated to the resistance of the earth at each frequency and location. The resistance values are indicative of the presence or absence of deposits at the corresponding subterranean depth.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: September 27, 2005
    Inventor: Kent Byerly
  • Patent number: 6866098
    Abstract: System and methods for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: March 15, 2005
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, James R. Carl, Kent A. Byerly, B. Jon Amini
  • Publication number: 20040153246
    Abstract: Methods for processing magnetotelluric signals to identify subterranean deposits are provided for. The methods comprise obtaining magnetotelluric data from an area of interest. The magnetotelluric data comprises the amplitude of magnetotelluric signals recorded over time at defined locations in the area of interest. The data for each location then is filtered through a set of frequency filters. The frequencies of the frequency filters correspond to subterranean depths over a range of interest. Amplitude peaks in the filtered data then are identified and analyzed to determine a value correlated to the resistance of the earth at each frequency at each location. The resistance values are indicative of the presence or absence of deposits at the corresponding subterranean depth.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 5, 2004
    Inventor: Kent Byerly
  • Patent number: 6651739
    Abstract: System and methods are disclosed for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: November 25, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, James R. Carl, Kent A. Byerly, B. Jon Amini
  • Patent number: 6650280
    Abstract: System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2&pgr; phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2&pgr; phase range which defines the phase shift.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: November 18, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, Phong H. Ngo, James R. Carl, Kent A. Byerly
  • Patent number: 6559645
    Abstract: Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: May 6, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, Phong H. Ngo, James R. Carl, Kent A. Byerly, John Dusl
  • Patent number: 6529443
    Abstract: A two-conductor bidirectional digital telemetry interface between a seismic sensor acquisition/conversion module and a seismic data collection module. The data collection module is configured as a master electronics device and the sensor acquisition/conversion module is configured as a slave electronics device in the telemetry system. The master device provides power to the slave device over the two conductors. The master device transmits portions of commands to the slave device at a first time and the slave device transmits portions of a digital seismic data packet to the master at a different second time in a fixed-duration frame. The frames are transmitted at regular intervals. The outbound commands and inbound data are encoded by block codes. A phase-locked loop in the slave is locked to a master clock in the master by deriving a clock and a sync point from the block-coded commands it receives from the master.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: March 4, 2003
    Assignee: Input/Output, Inc.
    Inventors: John C. Downey, Jr., Ralph Kruse, Allen J. Bishop, Kent A. Byerly
  • Patent number: 6501414
    Abstract: Apparatus and methods are disclosed for detecting anomalies in microwave penetrable material that may be used for locating plastic mines or pipes underneath the ground. A transmitter is positioned at a plurality of different positions above the ground. A microwave signal is transmitted that is stepped over a plurality of frequencies. At each position, a plurality of reflections are received corresponding to each of the plurality of frequencies that were transmitted. A complex target vector may be produced at each position that contains complex values corresponding to magnitude, phase, and time delay for each of the plurality of reflections received at that location. A complex reference data vector may be produced, either based on predetermined values or based on data from the received plurality of reflections. A comparison is made between the complex target vector and the complex reference data vector to produce a channel vector.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: December 31, 2002
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, James R. Carl, Kent A. Byerly, Phong H. Ngo, Larry G. Stolarczyk
  • Publication number: 20020175849
    Abstract: Apparatus and methods are disclosed for detecting anomalies in microwave penetrable material that may be used for locating plastic mines or pipes underneath the ground. A transmitter is positioned at a plurality of different positions above the ground. A microwave signal is transmitted that is stepped over a plurality of frequencies. At each position, a plurality of reflections are received corresponding to each of the plurality of frequencies that were transmitted. A complex target vector may be produced at each position that contains complex values corresponding to magnitude, phase, and time delay for each of the plurality of reflections received at that location. A complex reference data vector may be produced, either based on predetermined values or based on data from the received plurality of reflections. A comparison is made between the complex target vector and the complex reference data vector to produce a channel vector.
    Type: Application
    Filed: April 2, 2001
    Publication date: November 28, 2002
    Inventors: G. Dickey Arndt, James R. Carl, Kent A. Byerly, Phong H. Ngo, Larry G. Stolarczyk
  • Publication number: 20020163346
    Abstract: Transceiver and methods are disclosed that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines.
    Type: Application
    Filed: October 30, 2001
    Publication date: November 7, 2002
    Inventors: G. Dickey Arndt, Phong H. Ngo, James R. Carl, Kent A. Byerly, John Dusl
  • Publication number: 20020126574
    Abstract: A two-conductor bidirectional digital telemetry interface between a seismic sensor acquisition/conversion module and a seismic data collection module. The data collection module is configured as a master electronics device and the sensor acquisition/conversion module is configured as a slave electronics device in the telemetry system. The master device provides power to the slave device over the two conductors. The master device transmits portions of commands to the slave device at a first time and the slave device transmits portions of a digital seismic data packet to the master at a different second time in a fixed-duration frame. The frames are transmitted at regular intervals. The outbound commands and inbound data are encoded by block codes. A phase-locked loop in the slave is locked to a master clock in the master by deriving a clock and a sync point from the block-coded commands it receives from the master.
    Type: Application
    Filed: January 10, 2001
    Publication date: September 12, 2002
    Inventors: John C. Downey, Ralph Kruse, Allen J. Bishop, Kent A. Byerly
  • Publication number: 20020112855
    Abstract: System and methods are disclosed for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.
    Type: Application
    Filed: February 21, 2001
    Publication date: August 22, 2002
    Inventors: G. Dickey Arndt, James R. Carl, Kent A. Byerly, B. Jon Amini
  • Publication number: 20020101373
    Abstract: System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2 &pgr; phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2&pgr; phase range which defines the phase shift.
    Type: Application
    Filed: September 14, 2001
    Publication date: August 1, 2002
    Inventors: G. Dickey Arndt, Phong H. Ngo, James R. Carl, Kent A. Byerly
  • Patent number: 6005828
    Abstract: A seismic ocean bottom positioning device include a series of seismic stations spaced apart at a predetermined interval along a cable. Each station includes a hydrophone, a motion sensing device such as a geophone and an acoustic positioning circuit. A preamplifier is coupled to a seismic channel. The hydrophone is also coupled to the seismic channel. An acoustic channel is also coupled to the preamplifier and coupled to the hydrophone.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: December 21, 1999
    Assignee: Input/Output, Inc.
    Inventors: Paul Ellington Carroll, Roy Wilson James, III, Eugene David Bednar, Charles Geoffrey Rice, Kent A. Byerly
  • Patent number: 4762994
    Abstract: A compact optical scanner includes a base unit and a scan unit. The base unit includes an optical source such as a laser and an optical path directing a beam emitted by the laser to a scan mirror which is located in and supported by the scan unit. As the scan mirror rotates, the optical beam is reflected back to the base unit from which it is emitted as a beam scanning to and fro in a scan plane. The scan unit is supported by reference to the base unit such that the oscillation axis of the scan mirror is substantially and preferably parallel to the scan plane.
    Type: Grant
    Filed: November 10, 1986
    Date of Patent: August 9, 1988
    Assignee: IBM Corp.
    Inventors: Kent A. Byerly, Duane E. Grant
  • Patent number: 4692877
    Abstract: A pel timing clock compensates for the non-linear displacement profile of a resonant galvanometerscanner. A pel time counter is loaded with a count value and outputs a clock pulse after expiration of a delay serial determined by the count value. Each time the clock pulse is produced the pel time counter is reloaded. The various count values are accessed from a memory which is addressed by an address counter whose contents are also altered each time the clock pulse is produced. The memory stores a sequence of count values which, when used to load the pel time counter, produces the desired sequence of clock pulses to compensate for the non-linear displacement profile of the scanner.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: September 8, 1987
    Assignee: IBM Corporation
    Inventors: Kent A. Byerly, Marvin E. Feldhacker, Duane E. Grant