Patents by Inventor Kent A. Watson

Kent A. Watson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9475973
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 25, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Jr., Sayata Ghose, John W. Connell
  • Patent number: 9120677
    Abstract: A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: September 1, 2015
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Kent Watson, Yi Lin, Sayata Ghose, John Connell
  • Patent number: 8790773
    Abstract: A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: July 29, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A Elliott, John W. Connell, Joseph G. Smith, Sayata Ghose, Kent A. Watson, Donavon Mark Delozier
  • Publication number: 20140203206
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 24, 2014
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, JR., Sayata Ghose, John W. Connell
  • Patent number: 8703235
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 22, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Patent number: 8508413
    Abstract: An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 13, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A. Elliott, Robin L. Cravey, John W. Connell, Sayata Ghose, Kent A. Watson, Joseph G. Smith, Jr.
  • Publication number: 20110254739
    Abstract: An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: U. S. A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. DUDLEY, Holly A. ELLIOTT, Robin L. CRAVEY, John W. CONNELL, Sayata GHOSE, Kent A. WATSON, Joseph G. SMITH
  • Publication number: 20110256197
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Patent number: 7972536
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 5, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7906043
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7723464
    Abstract: Novel compositions of matter comprise certain derivatives of 9,9-dialkyl fluorene diamine (AFDA). The resultant compositions, whether compositions of matter or monomers that are subsequently incorporated into a polymer, are unique and useful in a variety of applications. Useful applications of AFDA-based material include heavy ion radiation shielding components and components of optical and electronic devices.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: May 25, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Donovan M. Delozier, Kent A. Watson, John W. Connell, Joseph G. Smith, Jr.
  • Patent number: 7704553
    Abstract: A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: April 27, 2010
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administrator of NASA
    Inventors: Kent A. Watson, Michael J. Fallbach, Sayata Ghose, Joseph G. Smith, Donavon M. Delozier, John W. Connell
  • Publication number: 20100084618
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Application
    Filed: August 25, 2009
    Publication date: April 8, 2010
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, JR., Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Publication number: 20100078600
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Application
    Filed: August 31, 2009
    Publication date: April 1, 2010
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7667847
    Abstract: A photogrammetric system uses an array of spaced-apart targets coupled to a structure. Each target exhibits fluorescence when exposed to a broad beam of illumination. A photogrammetric imaging system located remotely with respect to the structure detects and processes the fluorescence (but not the illumination wavelength) to measure the shape of a structure.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: February 23, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Adrian A. Dorrington, Thomas W. Jones, Paul M. Danehy, Kent A. Watson, John W. Connell, Richard S. Pappa, W. Keith Belvin
  • Patent number: 7588699
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400–800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: September 15, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Kent A. Watson, Zoubeida Ounaies, John W. Connell, Joseph G. Smith, Joycelyn S. Harrison
  • Publication number: 20090022977
    Abstract: A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 22, 2009
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A. Elliott, John W. Connell, Joseph G. Smith, Sayata Ghose, Kent A. Watson, Donavon Mark Delozier
  • Patent number: 7467639
    Abstract: A method for controlling a motion of a gas valve in a gas feed line coupling a supply device to a burner is provided. The method includes receiving a signal representative of a user-selected desired level of heat output of the burner, translating the received signal to a first current signal, measuring a second current signal in a conducting medium that is operatively coupled with the valve, deriving a third current signal from the first and second current signals, and providing the third current signal to the conducting medium to control the motion of the valve.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: December 23, 2008
    Assignee: General Electric Company
    Inventors: Eric Kent Watson, Derrick Douglas Little
  • Publication number: 20080074669
    Abstract: A photogrammetric system uses an array of spaced-apart targets coupled to a structure. Each target exhibits fluorescence when exposed to a broad beam of illumination. A photogrammetric imaging system located remotely with respect to the structure detects and processes the fluorescence (but not the illumination wavelength) to measure the shape of a structure.
    Type: Application
    Filed: September 21, 2006
    Publication date: March 27, 2008
    Applicant: U.S.A. as represented by the Administrator of the National Aeronautics & Space Administration
    Inventors: Adrian A. Dorrington, Thomas W. Jones, Paul M. Danehy, Kent A. Watson, John W. Connell, Richard S. Pappa, Keith Belvin W.
  • Publication number: 20080004419
    Abstract: Novel compositions of matter comprise certain derivatives of 9,9-dialkyl fluorene diamine (AFDA). The resultant compositions, whether compositions of matter or monomers that are subsequently incorporated into a polymer, are unique and useful in a variety of applications. Useful applications of AFDA-based material include heavy ion radiation shielding components and components of optical and electronic devices.
    Type: Application
    Filed: February 13, 2007
    Publication date: January 3, 2008
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Donovan Delozier, Kent Watson, John Connell, Joseph Smith