Patents by Inventor Kent E. Coulter

Kent E. Coulter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11192184
    Abstract: The present disclosure is directed to systems and methods for producing a metal-containing powder useful for additive manufacturing. The metal-containing powder includes a plurality of metal-containing platelets having a defined physical geometry and a defined aspect ratio. The metal platelets may be produced by depositing a metal layer on a substrate that includes one or more recessed or raised surface features. The one or more recessed or raised surface features create a fracture pattern in a metal layer deposited across at least a portion of the one or more surface features. By separating the metal layer from the substrate and fracturing the metal layer along the fracture pattern, a plurality of metal platelets are produced. In some embodiments, a release agent may be disposed between the metal layer and the substrate to facilitate the separation of the metal layer from the substrate.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: December 7, 2021
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Vasiliki Z. Poenitzsch, Randy L. McKnight, Carl F. Popelar, Michael A. Miller, John H. Macha, Kent E. Coulter
  • Publication number: 20200398344
    Abstract: The present disclosure is directed to systems and methods for producing a metal-containing powder useful for additive manufacturing. The metal-containing powder includes a plurality of metal-containing platelets having a defined physical geometry and a defined aspect ratio. The metal platelets may be produced by depositing a metal layer on a substrate that includes one or more recessed or raised surface features. The one or more recessed or raised surface features create a fracture pattern in a metal layer deposited across at least a portion of the one or more surface features. By separating the metal layer from the substrate and fracturing the metal layer along the fracture pattern, a plurality of metal platelets are produced. In some embodiments, a release agent may be disposed between the metal layer and the substrate to facilitate the separation of the metal layer from the substrate.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 24, 2020
    Inventors: Vasiliki Z. POENITZSCH, Randy L. McKNIGHT, Carl F. POPELAR, Michael A. MILLER, John H. MACHA, Kent E. COULTER
  • Patent number: 10440808
    Abstract: A method and system for generating a surface treating plasma. Gas is provided to a power conducting electrode and flows through the power conducting electrode. Power pulses are applied to the power conducting electrode in the range of 40 kW to 100 kW with a DC generator, at a frequency in the range of 1 Hz to 62.5 kHz, and with a pulse duration in the range of 0.1 microseconds to 3,000 microseconds. Peak currents in the range of 100 Amps to 400 Amps are produced and plasma is formed from the gas. A substrate surface may then be treated with the plasma.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: October 8, 2019
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Vasiliki Zorbas Poenitzsch, Ronghua Wei, Kent E. Coulter, Edward Langa
  • Patent number: 10354845
    Abstract: An atmospheric pressure pulsed arc plasma source and method of using including a housing having a housing opening therein; an insulator tube having an insulator tube opening therein, retained within the housing opening; and a conductive tube, retained within the insulator tube opening. A nozzle is retained by the housing. A feed path is defined in the conductive tube and the nozzle and a gas feed port is operatively coupled to the feed path. Feedstock is provided in the feed path and electrically coupled to the conductive tube. A pulsed DC power source provides a pulsed voltage to the conductive tube. The plasma source emits a discharge stream having a temperature that is less than 50° C. from the nozzle and a coating is formed on a substrate.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: July 16, 2019
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Vasiliki Zorbas Poenitzsch, Ronghua Wei, Edward Langa, Kent E. Coulter
  • Patent number: 9963781
    Abstract: Carbon nanotubes grown on nanostructured flake substrates are disclosed. The nanostructured flake substrates include a catalyst support layer and at least one catalyst layer. Carbon nanotubes grown on the nanostructured flake substrates can have very high aspect ratios. Further, the carbon nanotubes can be aligned on the nanostructured flake substrates. Through routine optimization, the nanostructured flake substrates may be used to produce single-wall, double-wall, or multi-wall carbon nanotubes of various lengths and diameters. The nanostructured flake substrates produce very high yields of carbon nanotubes per unit weight of substrate. Methods for making the nanostructured flake substrates and for using the nanostructured flake substrates in carbon nanotube synthesis are disclosed.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: May 8, 2018
    Assignees: SOUTHWEST RESEARCH INSTITUTE, WILLIAM MARSH RICE UNIVERSITY
    Inventors: Howard K. Schmidt, Robert H. Hauge, Cary L. Pint, Sean T. Pheasant, Kent E. Coulter
  • Publication number: 20170243727
    Abstract: An atmospheric pressure pulsed arc plasma source and method of using including a housing having a housing opening therein; an insulator tube having an insulator tube opening therein, retained within the housing opening; and a conductive tube, retained within the insulator tube opening. A nozzle is retained by the housing. A feed path is defined in the conductive tube and the nozzle and a gas feed port is operatively coupled to the feed path. Feedstock is provided in the feed path and electrically coupled to the conductive tube. A pulsed DC power source provides a pulsed voltage to the conductive tube. The plasma source emits a discharge stream having a temperature that is less than 50° C. from the nozzle and a coating is formed on a substrate.
    Type: Application
    Filed: February 18, 2016
    Publication date: August 24, 2017
    Inventors: Vasiliki Zorbas POENITZSCH, Ronghua WEI, Edward LANGA, Kent E. COULTER
  • Publication number: 20170142819
    Abstract: A method and system for generating a surface treating plasma. Gas is provided to a power conducting electrode and flows through the power conducting electrode. Power pulses are applied to the power conducting electrode in the range of 40 kW to 100 kW with a DC generator, at a frequency in the range of 1 Hz to 62.5 kHz, and with a pulse duration in the range of 0.1 microseconds to 3,000 microseconds. Peak currents in the range of 100 Amps to 400 Amps are produced and plasma is formed from the gas. A substrate surface may then be treated with the plasma.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Vasiliki Zorbas POENITZSCH, Ronghua WEI, Kent E. COULTER, Edward LANGA
  • Patent number: 8496992
    Abstract: A method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 30, 2013
    Assignee: Southwest Research Institute
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Patent number: 8454732
    Abstract: A membrane composition and process for its formation are disclosed from the removal of carbon dioxide (CO2) from mixed gases, such as flue gases of energy production facilities. The membrane includes a substrate layer comprising inorganic oxides, a barrier layer of in-situ formed Li2ZrO3, a Li2ZrO3 sorbent layer and an inorganic oxide cap layer. The membrane has a feed side for introduction of mixed gases containing nitrogen (N2) and a sweep side for recovery of CO2 wherein the membrane has a relatively high selectivity for CO2 transport at temperatures in the range of 400° to 700° C.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 4, 2013
    Assignee: Southwest Research Institute
    Inventors: Francis Yu Chang Huang, Vladimir I. Gorokhovsky, Kent E. Coulter
  • Publication number: 20130064724
    Abstract: A membrane composition and process for its formation are disclosed from the removal of carbon dioxide (CO2) from mixed gases, such as flue gases of energy production facilities. The membrane includes a substrate layer comprising inorganic oxides, a barrier layer of in-situ formed Li2ZrO3, a Li2ZrO3 sorbent layer and an inorganic oxide cap layer. The membrane has a feed side for introduction of mixed gases containing nitrogen (N2) and a sweep side for recovery of CO2 wherein the membrane has a relatively high selectivity for CO2 transport at temperatures in the range of 400° to 700° C.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Francis Y. HUANG, Vladimir I. GOROKHOVSKY, Kent E. COULTER
  • Publication number: 20120148762
    Abstract: The present disclosure relates to a method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Publication number: 20100028613
    Abstract: Carbon nanotubes grown on nanostructured flake substrates are disclosed. The nanostructured flake substrates include a catalyst support layer and at least one catalyst layer. Carbon nanotubes grown on the nanostructured flake substrates can have very high aspect ratios. Further, the carbon nanotubes can be aligned on the nanostructured flake substrates. Through routine optimization, the nanostructured flake substrates may be used to produce single-wall, double-wall, or multi-wall carbon nanotubes of various lengths and diameters. The nanostructured flake substrates produce very high yields of carbon nanotubes per unit weight of substrate. Methods for making the nanostructured flake substrates and for using the nanostructured flake substrates in carbon nanotube synthesis are disclosed.
    Type: Application
    Filed: October 29, 2008
    Publication date: February 4, 2010
    Applicant: William Marsh Rice University
    Inventors: Howard K. Schmidt, Robert H. Hauge, Cary L. Pint, Sean T. Pheasant, Kent E. Coulter
  • Patent number: 7608330
    Abstract: Opaque glitter particles that are uniform in size and shape are disclosed that have an optically variable color with a change in angle of incident light. The glitter particles have an organic substrate and an optical interference structure on one or both sides of the organic substrate. The optical interference design can be a Fabry-Perot structure or can be an optically variable ink.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: October 27, 2009
    Assignee: JDS Uniphase Corporation
    Inventors: Alberto Argoitia, Kent E. Coulter, Roger W. Phillips
  • Patent number: 6699313
    Abstract: A flake-based pigment is provided having improved specular reflectance characteristics in the visible wavelength range. The flake-based pigment has a plurality of composite reflective flakes each formed of a support layer and a reflector layer on one or both opposing sides of the support layer. This flake structure exhibits a uniaxial compressive strength much greater than a corresponding uniaxial tensile strength. The structure of the flakes provides the benefits of rigidity and brittle fracture during manufacture and application processes, which ultimately provides favorable planar and specular reflectance characteristics to the pigment in the visible wavelength range. A variety of outer coating layers can be formed around the composite reflective flakes, such as various dielectric and/or absorber layers, to produce desired optical characteristics in the pigment.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: March 2, 2004
    Assignee: Flex Products, Inc.
    Inventors: Kent E. Coulter, Thomas Mayer, John S. Matteucci, Roger W. Phillips
  • Publication number: 20030207113
    Abstract: A flake-based pigment is provided having improved specular reflectance characteristics in the visible wavelength range. The flake-based pigment has a plurality of composite reflective flakes each formed of a support layer and a reflector layer on one or both opposing sides of the support layer. This flake structure exhibits a uniaxial compressive strength much greater than a corresponding uniaxial tensile strength. The structure of the flakes provides the benefits of rigidity and brittle fracture during manufacture and application processes, which ultimately provides favorable planar and specular reflectance characteristics to the pigment in the visible wavelength range. A variety of outer coating layers can be formed around the composite reflective flakes, such as various dielectric and/or absorber layers, to produce desired optical characteristics in the pigment.
    Type: Application
    Filed: March 27, 2003
    Publication date: November 6, 2003
    Applicant: Flex Products, Inc.
    Inventors: Kent E. Coulter, Thomas Mayer, John S. Matteucci, Mary E. Matteucci, Roger W. Phillips
  • Patent number: 6586098
    Abstract: A flake-based pigment is provided having improved specular reflectance characteristics in the visible wavelength range. The flake-based pigment has a plurality of composite reflective flakes each formed of a support layer and a reflector layer on one or both opposing sides of the support layer. This flake structure exhibits a uniaxial compressive strength much greater than a corresponding uniaxial tensile strength. The structure of the flakes provides the benefits of rigidity and brittle fracture during manufacture and application processes, which ultimately provides favorable planar and specular reflectance characteristics to the pigment in the visible wavelength range. A variety of outer coating layers can be formed around the composite reflective flakes, such as various dielectric and/or absorber layers, to produce desired optical characteristics in the pigment.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: July 1, 2003
    Assignee: Flex Products, Inc.
    Inventors: Kent E. Coulter, Thomas Mayer, John S. Matteucci, Roger W. Phillips
  • Patent number: 6387498
    Abstract: A flake-based pigment is provided having improved specular reflectance characteristics in the visible wavelength range. The flake-based pigment has a plurality of core flake sections each formed of a central reflector layer and dielectric support layers on opposing sides of the reflector layer. The resulting core flake section is a very thin three-layered structure that exhibits a uniaxial compressive strength much greater than a corresponding uniaxial tensile strength. This structure provides the benefits of rigidity and brittle fracture during manufacturing and application processes, which ultimately provides favorable planar and specular reflectance characteristics for the pigment in the visible wavelength range. A variety of outer coating layers can be formed around the core flake sections, such as various dielectric and absorber layers having thicknesses dependent upon the desired optical characteristics of the pigment.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: May 14, 2002
    Assignee: Flex Products, Inc.
    Inventors: Kent E. Coulter, Thomas Mayer, Roger W. Phillips, John S. Matteucci
  • Patent number: 6383638
    Abstract: A flake-based pigment is provided having improved specular reflectance characteristics in the visible wavelength range. The flake-based pigment has a plurality of core flake sections each formed of a central reflector layer and dielectric support layers on opposing sides of the reflector layer. The resulting core flake section is a very thin three-layered structure that exhibits a uniaxial compressive strength much greater than a corresponding uniaxial tensile strength. This structure provides the benefits of rigidity and brittle fracture during manufacturing and application processes, which ultimately provides favorable planar and specular reflectance characteristics for the pigment in the visible wavelength range. A variety of outer coating layers can be formed around the core flake sections, such as various dielectric and absorber layers having thicknesses dependent upon the desired optical characteristics of the pigment.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 7, 2002
    Assignee: Flex Products, Inc.
    Inventors: Kent E. Coulter, Thomas Mayer, Roger W. Phillips, John S. Matteucci
  • Patent number: 6150022
    Abstract: A flake-based pigment is provided having improved specular reflectance characteristics in the visible wavelength range. The flake-based pigment has a plurality of core flake sections each formed of a central reflector layer and dielectric support layers on opposing sides of the reflector layer. The resulting core flake section is a very thin three-layered structure that exhibits a uniaxial compressive strength much greater than a corresponding uniaxial tensile strength. This structure provides the benefits of rigidity and brittle fracture during manufacturing and application processes, which ultimately provides favorable planar and specular reflectance characteristics for the pigment in the visible wavelength range. A variety of outer coating layers can be formed around the core flake sections, such as various dielectric and absorber layers having thicknesses dependent upon the desired optical characteristics of the pigment.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: November 21, 2000
    Assignee: Flex Products, Inc.
    Inventors: Kent E. Coulter, Thomas Mayer, Roger W. Phillips, John S. Matteucci