Patents by Inventor Kent E. Mitchell

Kent E. Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230331642
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Inventors: Bruce Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Patent number: 11753356
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce E. Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Publication number: 20230081124
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Inventors: Bruce E. Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Patent number: 11572324
    Abstract: Methods for determining ethylene concentration in an ethylene oligomerization reactor using an ultrasonic flow meter are described, and these methods are integrated into ethylene oligomerization processes and related oligomerization reactor systems.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: February 7, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Bruce E. Kreischer, Kendall M. Hurst, Eric D. Schwerdtfeger, Steven M. Bischof, Jared Fern, Kent E. Mitchell, James Hillier
  • Publication number: 20150175748
    Abstract: A process for producing a poly(arylene sulfide) polymer comprising (a) polymerizing reactants in a reaction vessel to produce a poly(arylene sulfide) reaction mixture, (b) processing the poly(arylene sulfide) reaction mixture to obtain a poly(arylene sulfide) polymer and a by-product slurry, (c) removing (e.g., evaporating) at least a portion of the by-product slurry to yield salt solids particulates, wherein at least a portion of the evaporating is carried out while simultaneously sizing the salt solids particulates to a desired size.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey S. Fodor, R. Shawn Childress, Kent E. Mitchell, Kendall M. Hurst
  • Publication number: 20130317159
    Abstract: The present application relates reinforced poly(arylene sulfide) compositions and processes of producing the reinforced poly(arylene sulfide) compositions. The reinforced poly(arylene sulfide compositions can be prepared by blending the reinforcing agent with the poly(arylene sulfide) or by including the reinforcing agent in the process to produce the poly(arylene sulfide). Reinforcing agents which can be utilized are graphenes (e.g., single-walled carbon nanotubes). The inclusion of the graphene reinforcing agent in the poly(arylene sulfide) composition affects the crystallization properties and/or the conductivity of the melt processed poly(arylene sulfide) compositions.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Jon F. Geibel, David F. Register, Ta Yen Ching, R. Shawn Childress, Jeffrey S. Fodor, Kent E. Mitchell, Howard S. Ferrell
  • Patent number: 6852660
    Abstract: A solid metallocene-containing catalyst system of an organoaluminoxane, at least one metallocene having at least one olefinically unsaturated substituent and a polyolefin is disclosed. The polyolefin is formed from at least one olefin polymerized in the presence of a combination of a solution of the organoluminoxane in an aromatic liquid, the at least one metallocene, and an aliphatic liquid. The solid metallocene-containing catalyst system may also include one or more the particulate solids.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: February 8, 2005
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Publication number: 20030144436
    Abstract: A solid metallocene-containing catalyst system of an organoaluminoxane, at least one metallocene having at least one olefinically unsaturated substituent and a polyolefin is disclosed. The polyolefin is formed from at least one olefin polymerized in the presence of a combination of a solution of the organoluminoxane in an aromatic liquid, the at least one metallocene, and an aliphatic liquid. The solid metallocene-containing catalyst system may also include one or more the particulate solids.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 31, 2003
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Patent number: 6534609
    Abstract: Methods are disclosed for preparing a highly active solid metallocene-containing catalyst system and its use in the polymerization of olefins. The catalyst system is prepared by creating a catalyst system solution by combining an aluminoxane with a metallocene having a substituent which has olefinic unsaturation in an aliphatic liquid to form a liquid catalyst system, conducting prepolymerization of an olefin in the liquid catalyst system, preferably in multiple stages, and separating the resulting solid metallocene-containing catalyst system from the reaction mixture. Also polymerization of olefins using the inventive solid catalyst system is disclosed.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: March 18, 2003
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Publication number: 20020177676
    Abstract: Methods are disclosed for preparing a highly active solid metallocene-containing catalyst system and its use in the polymerization of olefins. The catalyst system is prepared by creating a catalyst system solution by combining an aluminoxane with a metallocene having a substituent which has olefinic unsaturation in an aliphatic liquid to form a liquid catalyst system, conducting prepolymerization of an olefin in the liquid catalyst system, preferably in multiple stages, and separating the resulting solid metallocene-containing catalyst system from the reaction mixture. Also polymerization of olefins using the inventive solid catalyst system is disclosed.
    Type: Application
    Filed: March 13, 2001
    Publication date: November 28, 2002
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Patent number: 6197899
    Abstract: A process is disclosed for the particle form polymerization of olefins. The process employs a titanium-containing having hydrocarbon soluble titanium components. The resulting catalyst is pretreated with an organometallic reducing agent prior to the introduction of the catalyst into the polymerization zone to give a catalyst which can be used satisfactorily in a loop reactor with lower levels of cocatalyst.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: March 6, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Kent E. Mitchell, Max P. McDaniel, M. Bruce Welch, Elizabeth A. Benham, Grover W. Cone
  • Patent number: 6153100
    Abstract: The aqueous wash stream of an electrolytic precipitation system treating natural gas liquid (NGL) is maintained at a pH sufficiently basic to decrease the solubility of iron sulfide in the aqueous wash stream.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: November 28, 2000
    Assignee: Phillips Petroleum Company
    Inventor: Kent E. Mitchell
  • Patent number: 5985783
    Abstract: A prepolymerized olefin polymerization catalyst, its prepration, and use are disclosed. The catalyst is prepared by contacting a solid particulate transition metal-containing olefin polymerization catalyst with an olefin in a confined zone under suitable conditions wherein the prepolymerization is conducted under conditions such that the olefin is added to the confined zone at a rate such that the pressure in the confined zone increases no more than about 0.5 psig/sec. during the olefin addition.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: November 16, 1999
    Assignee: Phillips Petroleum Company
    Inventor: Kent E. Mitchell
  • Patent number: 5746908
    Abstract: A process for desalting a crude oil comprises (1) injecting steam into the oil to form a steam-injected oil; (2) adding water to the steam-injected oil to form a mixture; (3) introducing the mixture to a desalter; (4) inducing the formation of aqueous phase and oil phase; and (5) separating the oil phase from the aqueous phase. Where there are two desalting stages for desalting crude oil, the process can be carried out in either the first stage or second stage, or both stages. The process can also be similarly employed in a multistage desalting process.
    Type: Grant
    Filed: February 12, 1996
    Date of Patent: May 5, 1998
    Assignee: Phillips Petroleum Company
    Inventor: Kent E. Mitchell
  • Patent number: 5275992
    Abstract: A process is disclosed for the particle form polymerization of olefins. The process employs a titanium-containing having hydrocarbon soluble titanium components. The resulting catalyst is pretreated with an organometallic reducing agent prior to the introduction of the catalyst into the polymerization zone to give a catalyst which can be used satisfactorily in a loop reactor with lower levels of cocatalyst.
    Type: Grant
    Filed: December 7, 1992
    Date of Patent: January 4, 1994
    Assignee: Phillips Petroleum Company
    Inventors: Kent E. Mitchell, Max P. McDaniel, M. Bruce Welch, Elizabeth A. Benham, Grover W. Cone
  • Patent number: 5244990
    Abstract: A prepolymerized olefin polymerization catalyst, its preparation, and use are disclosed. The catalyst is prepared by contacting a solid particulate transition metal-containing olefin polymerization catalyst with an olefin in a confined zone under suitable conditions wherein the prepolymerization is conducted under conditions such that the olefin is added to the confined zone at a rate such that the pressure in the confined zone increases no more than about 0.5 psig/sec. during the olefin addition.
    Type: Grant
    Filed: January 7, 1992
    Date of Patent: September 14, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Kent E. Mitchell
  • Patent number: 5237117
    Abstract: Catalyst supports, catalyst systems, methods for the preparation thereof, and dimerization process therewith are provided catalyst supports are extruded from a thick paste of potassium carbonate and water catalyst systems comprise at least one elemental alkali metal deposited on the catalyst support. Optionally, the catalyst system further comprises at least one promoter.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: August 17, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Paul F. Schubert, Ralph E. Bonnell, Norman L. Freeman, Jr., Denton C. Fentress, Kent E. Mitchell, Richard E. Lowery, Dodnald H. Kubicek
  • Patent number: 5235011
    Abstract: A process for preparing a polymerization catalyst useful for the polymerization of olefins is provided comprising contacting a metal dihalide compound wherein the metal is selected from Group 2 and Group 12 of the Periodic Table and a transition metal compound which is a hydrocarbyloxide of a transition metal selected from Group 4 and Group 5 to form a first catalyst component; contacting the first catalyst component with at least one organoaluminum precipitating agent, wherein at least at the commencement of this step, the temperature at which such contacting is carried out is greater than about 70.degree. C. to about 150.degree. C. to form a solid product, and contacting the solid product with an activating agent to form a catalyst. Other aspects of the invention provide a catalyst prepared by the above described method and a polymerization process employing the thus prepared catalyst.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: August 10, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Kent E. Mitchell, David C. Miller, Don W. Godbehere, Gil R. Hawley
  • Patent number: 5213785
    Abstract: This invention concerns an improved means of oxidizing aqueous dispersions of antimony trioxide to colloidal hydrous antimony pentoxide in a continuous flow system. The oxidant is hydrogen peroxide and the continuous flow system nominally consists of a static mixer and a tubular reactor.
    Type: Grant
    Filed: October 21, 1991
    Date of Patent: May 25, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Denton C. Fentress, Kent E. Mitchell, Don W. Godbehere, Larry S. Maddox, Richard E. Lowery, Howard F. Efner
  • Patent number: 5206314
    Abstract: A polymerization catalyst useful for the polymerization of olefins is prepared by contacting a metal dihalide compound having a metal selected from Group 2 and Group 12 of the Periodic Table and a transition metal compound which is a hydrocarbyloxide of a transition metal selected from Group 4 and Group 5 to thereby form a first catalyst component; contacting the first catalyst component with at least one organoaluminum precipitating agent to form a solid product; and contacting the solid product with an ester and then an activating agent to form a catalyst. Other aspects of the invention include a catalyst produced by the above described process and a polymerization process employing the thus produced catalyst.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: April 27, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Kent E. Mitchell, Paul F. Schubert, Gil R. Hawley