Patents by Inventor Kent S. Lybecker

Kent S. Lybecker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10093247
    Abstract: A system and method for determining when to display frontal curb view images to a driver of a vehicle, and what types of images to display. A variety of factors—such as vehicle speed, GPS/location data, the existence of a curb in forward-view images, and vehicle driving history—are evaluated as potential triggers for the curb view display, which is intended for situations where the driver is pulling the vehicle into a parking spot which is bounded in front by a curb or other structure. When forward curb-view display is triggered, a second evaluation is performed to determine what image or images to display which will provide the best view of the vehicle's position relative to the curb. The selected images are digitally synthesized or enhanced, and displayed on a console-mounted or in-dash display device.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: October 9, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Bakhtiar Brian Litkouhi, Ryan M. Frakes
  • Patent number: 9886636
    Abstract: A system and method for creating an enhanced virtual top-down view of an area in front of a vehicle, using images from left-front and right-front cameras. The enhanced virtual top-down view not only provides the driver with a top-down view perspective which is not directly available from raw camera images, but also removes the distortion and exaggerated perspective effects which are inherent in wide-angle lens images. The enhanced virtual top-down view also includes corrections for three types of problems which are typically present in de-warped images—including artificial protrusion of vehicle body parts into the image, low resolution and noise around the edges of the image, and a “double vision” effect for objects above ground level.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: February 6, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Bakhtiar Brian Litkouhi, Ryan M. Frakes
  • Patent number: 9858639
    Abstract: A method of displaying a captured image on a display device. A real image is captured by an image capture device. The image capture device uses a field-of-view lens that distorts the real image. A camera model is applied to the captured real image. The camera model maps objects in the captured real image to an image sensor plane of the image capture device to generate a virtual image. The image sensor plane is reconfigurable to virtually alter a shape of the image sensor plane to a non-planar surface. The virtual image formed on the non-planar image surface of the image sensor is projected to the display device.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 2, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Wende Zhang, Jinsong Wang, Bakhtiar B. Litkouhi, Kent S. Lybecker, Ryan M. Frakes
  • Patent number: 9834143
    Abstract: A system and method for creating an enhanced perspective view of an area in front of a vehicle, using images from left-front and right-front cameras. The enhanced perspective view removes the distortion and exaggerated perspective effects which are inherent in wide-angle lens images. The enhanced perspective view uses a camera model including a virtual image surface and other processing techniques which provide corrections for two types of problems which are typically present in de-warped perspective images—including a stretching effect at the peripheral area of a wide-angle image de-warped by rectilinear projection, and double image of objects in an area where left-front and right-front camera images overlap.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: December 5, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Bakhtiar Brian Litkouhi, Ryan M. Frakes
  • Patent number: 9738223
    Abstract: A method for dynamically registering a graphic upon a cropped image obtained from a camera device includes capturing an original image obtained from the camera device. Intrinsic calibration information for the camera device, extrinsic information for the camera device and vehicle information are monitored. The cropped image is generated based on cropping parameters to exclude undesirable content from the original image. The intrinsic calibration information is adjusted based on a relationship to the cropping parameters. The graphic is dynamically registered upon the cropped image based on the adjusted intrinsic calibration information for the camera device, the monitored extrinsic information for the camera device and the monitored vehicle information.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 22, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Bakhtiar Brian Litkouhi, Kent S. Lybecker
  • Patent number: 9538144
    Abstract: A system and method for providing lane sensing on a vehicle by detecting roadway lane-markers, where the system employs multiple cameras providing images around the vehicle. The method includes detecting left-side and right-side lane boundary lines in the camera images, and then determining whether the lane boundary lines in the images are aligned from one image frame to a next image frame and are aligned from image to image. If the boundary lines are not aligned, then calibration of one or more of the cameras is performed, and if the lines are aligned, then a model fitting process is used to specifically identify the location of the boundary lines on the roadway.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: January 3, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Wende Zhang, Bakhtiar Brian Litkouhi, Kent S. Lybecker
  • Patent number: 9516277
    Abstract: A system and method for providing lane sensing on a vehicle by detecting roadway lane-markers, where the system employs a surround view camera system providing a top-down view image around the vehicle. The method includes detecting left-side and right-side lane boundary lines in the top-down view image, and then determining whether the lane boundary lines in the image are aligned from one image frame to a next image frame and are aligned from image to image in the top-down view image. If the boundary lines are not aligned, then calibration of one or more of the cameras is performed, and if the lines are aligned, then a model fitting process is used to specifically identify the location of the boundary lines on the roadway.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: December 6, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Wende Zhang, Bakhtiar Brian Litkouhi, Kent S. Lybecker
  • Patent number: 9445011
    Abstract: A vehicle imaging system includes an image capture device capturing an image exterior of a vehicle. The captured image includes at least a portion of a sky scene. A processor generates a virtual image of a virtual sky scene from the portion of the sky scene captured by the image capture device. The processor determines a brightness of the virtual sky scene from the virtual image. The processor dynamically adjusts a brightness of the captured image based the determined brightness of the virtual image. A rear view mirror display device displays the adjusted captured image.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: September 13, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, James Clem, Charles A. Green, Ryan M. Frakes, Travis S. Hester
  • Patent number: 9405104
    Abstract: An apparatus for capturing an image includes a plurality of lens elements coaxially encompassed within a lens housing. A split-sub-pixel imaging chip includes an IR-pass filter coating applied on selected sub-pixels. The sub-pixels include a long exposure sub-pixel and a short-exposure sub-pixel for each of a plurality of green blue and red pixels.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 2, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Ryan M. Frakes, Travis S. Hester
  • Patent number: 9336574
    Abstract: Method for applying super-resolution to images captured by a camera device of a vehicle includes receiving a plurality of image frames captured by the camera device. For each image frame, a region of interest is identified within the image frame requiring resolution related to detail per pixel to be increased. Spatially-implemented super-resolution is applied to the region of interest within each image to enhance image sharpness within the region of interest.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 10, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Ryan M. Frakes, Travis S. Hester
  • Publication number: 20160098815
    Abstract: A method of displaying a captured image on a display device. A real image is captured by an image capture device. The image capture device uses a field-of-view lens that distorts the real image. A camera model is applied to the captured real image. The camera model maps objects in the captured real image to an image sensor plane of the image capture device to generate a virtual image. The image sensor plane is reconfigurable to virtually alter a shape of the image sensor plane to a non-planar surface. The virtual image formed on the non-planar image surface of the image sensor is projected to the display device.
    Type: Application
    Filed: November 18, 2015
    Publication date: April 7, 2016
    Inventors: WENDE ZHANG, JINSONG WANG, BAKHTIAR B. LITKOUHI, KENT S. LYBECKER, RYAN M. FRAKES
  • Patent number: 9304301
    Abstract: An apparatus for capturing an image includes a plurality of lens elements coaxially encompassed within a lens housing. One of the lens elements includes an aspheric lens element having a surface profile configured to enhance a desired region of a captured image. At least one glare-reducing element coaxial with the plurality of lens elements receives light subsequent to the light sequentially passing through each of the lens elements. An imaging chip receives the light subsequent to the light passing through the at least one glare-reducing element. The imaging chip includes a plurality of green, blue and red pixels.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 5, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Ryan M. Frakes, Travis S. Hester
  • Patent number: 9307207
    Abstract: A method for generating a glare-reduced image from images captured by a camera device of a subject vehicle includes obtaining a short-exposure image and a long-exposure image and generating a resulting high dynamic range image based on the short-exposure and long-exposure images. Pixel values are monitored within both the short- and long-exposure images. A light source region is identified within both the short- and long-exposure images based on the monitored pixel values. A glaring region is identified based on the identified light source region and one of calculated pixel ratios and calculated pixel differences between the monitored pixel values of the long- and short-exposure images. The identified glaring region upon the resulting high dynamic range image is modified with the identified light source region within the short-exposure image. The glare-reduced image is generated based on the modified identified glaring region upon the resulting HDR image.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 5, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Ryan M. Frakes, Travis S. Hester
  • Patent number: 9225942
    Abstract: A method for displaying a captured image on a display device. A real image is captured by a vision-based imaging device. A virtual image is generated from the captured real image based on a mapping by a processor. The mapping utilizes a virtual camera model with a non-planar imaging surface. Projecting the virtual image formed on the non-planar image surface of the virtual camera model to the display device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 29, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Bakhtiar Brian Litkouhi, Kent S. Lybecker, Ryan M. Frakes
  • Publication number: 20150077560
    Abstract: Methods and systems are provided for generating a curb view virtual image to assist a driver of a vehicle. The method includes capturing a first and second real image from a first and second camera having a forward-looking field of view. The first and second images are de-warped and combined to form a curb view virtual image view of the vehicle, which is displayed on display within the vehicle. The system includes a first and second camera having a forward-looking field of view to provide a first and second real image. A processor coupled to the first camera and the second camera configured to de-warps and combines the first and second real images to form a curb view virtual image view for display within the vehicle. The curb view virtual image may be a top-down virtual image view or a perspective virtual image view.
    Type: Application
    Filed: March 14, 2014
    Publication date: March 19, 2015
    Inventors: WENDE ZHANG, JINSONG WANG, KENT S. LYBECKER
  • Publication number: 20140347470
    Abstract: A system and method for creating an enhanced virtual top-down view of an area in front of a vehicle, using images from left-front and right-front cameras. The enhanced virtual top-down view not only provides the driver with a top-down view perspective which is not directly available from raw camera images, but also removes the distortion and exaggerated perspective effects which are inherent in wide-angle lens images. The enhanced virtual top-down view also includes corrections for three types of problems which are typically present in de-warped images—including artificial protrusion of vehicle body parts into the image, low resolution and noise around the edges of the image, and a “double vision” effect for objects above ground level.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 27, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: WENDE ZHANG, JINSONG WANG, KENT S. LYBECKER, JEFFREY S. PIASECKI, BAKHTIAR BRIAN LITKOUHI, RYAN M. FRAKES
  • Publication number: 20140347469
    Abstract: A system and method for creating an enhanced perspective view of an area in front of a vehicle, using images from left-front and right-front cameras. The enhanced perspective view removes the distortion and exaggerated perspective effects which are inherent in wide-angle lens images. The enhanced perspective view uses a camera model including a virtual image surface and other processing techniques which provide corrections for two types of problems which are typically present in de-warped perspective images—including a stretching effect at the peripheral area of a wide-angle image de-warped by rectilinear projection, and double image of objects in an area where left-front and right-front camera images overlap.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 27, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende ZHANG, Jinsong WANG, Kent S. LYBECKER, Jeffrey S. PIASECKI, Bakhtiar Brian LITKOUHI, Ryan M. FRAKES
  • Publication number: 20140347485
    Abstract: A system and method for determining when to display frontal curb view images to a driver of a vehicle, and what types of images to display. A variety of factors—such as vehicle speed, GPS/location data, the existence of a curb in forward-view images, and vehicle driving history—are evaluated as potential triggers for the curb view display, which is intended for situations where the driver is pulling the vehicle into a parking spot which is bounded in front by a curb or other structure. When forward curb-view display is triggered, a second evaluation is performed to determine what image or images to display which will provide the best view of the vehicle's position relative to the curb. The selected images are digitally synthesized or enhanced, and displayed on a console-mounted or in-dash display device.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 27, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wende Zhang, Jinsong Wang, Kent S. Lybecker, Jeffrey S. Piasecki, Bakhtiar Brian Litkouhi, Ryan M. Frakes
  • Publication number: 20140193032
    Abstract: Method for applying super-resolution to images captured by a camera device of a vehicle includes receiving a plurality of image frames captured by the camera device. For each image frame, a region of interest is identified within the image frame requiring resolution related to detail per pixel to be increased. Spatially-implemented super-resolution is applied to the region of interest within each image to enhance image sharpness within the region of interest.
    Type: Application
    Filed: September 30, 2013
    Publication date: July 10, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: WENDE ZHANG, JINSONG WANG, KENT S. LYBECKER, JEFFREY S. PIASECKI, RYAN M. FRAKES, TRAVIS S. HESTER
  • Publication number: 20140192227
    Abstract: A method for generating a glare-reduced image from images captured by a camera device of a subject vehicle includes obtaining a short-exposure image and a long-exposure image and generating a resulting high dynamic range image based on the short-exposure and long-exposure images. Pixel values are monitored within both the short- and long-exposure images. A light source region is identified within both the short- and long-exposure images based on the monitored pixel values. A glaring region is identified based on the identified light source region and one of calculated pixel ratios and calculated pixel differences between the monitored pixel values of the long- and short-exposure images. The identified glaring region upon the resulting high dynamic range image is modified with the identified light source region within the short-exposure image. The glare-reduced image is generated based on the modified identified glaring region upon the resulting HDR image.
    Type: Application
    Filed: September 30, 2013
    Publication date: July 10, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: WENDE ZHANG, JINSONG WANG, KENT S. LYBECKER, JEFFREY S. PIASECKI, RYAN M. FRAKES, TRAVIS S. HESTER